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Figure 4.1 As a rocket is being launched, at what rate should the angle of a video camera change to continue viewing the
rocket? (credit: modification of work by Steve Jurvetson, Wikimedia Commons)
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Introduction
A rocket is being launched from the ground and cameras are recording the event. A video camera is located on the ground
a certain distance from the launch pad. At what rate should the angle of inclination (the angle the camera makes with the
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ground) change to allow the camera to record the flight of the rocket as it heads upward? (See Example 4.3.)

A rocket launch involves two related quantities that change over time. Being able to solve this type of problem is just
one application of derivatives introduced in this chapter. We also look at how derivatives are used to find maximum and
minimum values of functions. As a result, we will be able to solve applied optimization problems, such as maximizing
revenue and minimizing surface area. In addition, we examine how derivatives are used to evaluate complicated limits, to
approximate roots of functions, and to provide accurate graphs of functions.

4.1 | Related Rates

Learning Objectives
4.1.1 Express changing quantities in terms of derivatives.
4.1.2 Find relationships among the derivatives in a given problem.
4.1.3 Use the chain rule to find the rate of change of one quantity that depends on the rate of
change of other quantities.

We have seen that for quantities that are changing over time, the rates at which these quantities change are given by
derivatives. If two related quantities are changing over time, the rates at which the quantities change are related. For
example, if a balloon is being filled with air, both the radius of the balloon and the volume of the balloon are increasing.
In this section, we consider several problems in which two or more related quantities are changing and we study how to
determine the relationship between the rates of change of these quantities.

Setting up Related-Rates Problems
In many real-world applications, related quantities are changing with respect to time. For example, if we consider the
balloon example again, we can say that the rate of change in the volume, is related to the rate of change in the radius,

In this case, we say that and are related rates because V is related to r. Here we study several examples of

related quantities that are changing with respect to time and we look at how to calculate one rate of change given another
rate of change.

Example 4.1

Inflating a Balloon

A spherical balloon is being filled with air at the constant rate of (Figure 4.2). How fast is the radius
increasing when the radius is

Figure 4.2 As the balloon is being filled with air, both the radius and the volume are increasing with respect to time.

Solution
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4.1

The volume of a sphere of radius centimeters is

Since the balloon is being filled with air, both the volume and the radius are functions of time. Therefore,
seconds after beginning to fill the balloon with air, the volume of air in the balloon is

Differentiating both sides of this equation with respect to time and applying the chain rule, we see that the rate of
change in the volume is related to the rate of change in the radius by the equation

The balloon is being filled with air at the constant rate of 2 cm3/sec, so Therefore,

which implies

When the radius

What is the instantaneous rate of change of the radius when

Before looking at other examples, let’s outline the problem-solving strategy we will be using to solve related-rates problems.

Problem-Solving Strategy: Solving a Related-Rates Problem

1. Assign symbols to all variables involved in the problem. Draw a figure if applicable.

2. State, in terms of the variables, the information that is given and the rate to be determined.

3. Find an equation relating the variables introduced in step 1.

4. Using the chain rule, differentiate both sides of the equation found in step 3 with respect to the independent
variable. This new equation will relate the derivatives.

5. Substitute all known values into the equation from step 4, then solve for the unknown rate of change.

Note that when solving a related-rates problem, it is crucial not to substitute known values too soon. For example, if the
value for a changing quantity is substituted into an equation before both sides of the equation are differentiated, then that
quantity will behave as a constant and its derivative will not appear in the new equation found in step 4. We examine this
potential error in the following example.

Examples of the Process
Let’s now implement the strategy just described to solve several related-rates problems. The first example involves a plane
flying overhead. The relationship we are studying is between the speed of the plane and the rate at which the distance
between the plane and a person on the ground is changing.
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Example 4.2

An Airplane Flying at a Constant Elevation

An airplane is flying overhead at a constant elevation of A man is viewing the plane from a position
from the base of a radio tower. The airplane is flying horizontally away from the man. If the plane is

flying at the rate of at what rate is the distance between the man and the plane increasing when the
plane passes over the radio tower?

Solution
Step 1. Draw a picture, introducing variables to represent the different quantities involved.

Figure 4.3 An airplane is flying at a constant height of 4000 ft. The distance between the
person and the airplane and the person and the place on the ground directly below the airplane
are changing. We denote those quantities with the variables and respectively.

As shown, denotes the distance between the man and the position on the ground directly below the airplane.
The variable denotes the distance between the man and the plane. Note that both and are functions of
time. We do not introduce a variable for the height of the plane because it remains at a constant elevation of

Since an object’s height above the ground is measured as the shortest distance between the object and
the ground, the line segment of length 4000 ft is perpendicular to the line segment of length feet, creating a
right triangle.

Step 2. Since denotes the horizontal distance between the man and the point on the ground below the plane,

represents the speed of the plane. We are told the speed of the plane is 600 ft/sec. Therefore,

ft/sec. Since we are asked to find the rate of change in the distance between the man and the plane when the plane
is directly above the radio tower, we need to find when

Step 3. From the figure, we can use the Pythagorean theorem to write an equation relating and

Step 4. Differentiating this equation with respect to time and using the fact that the derivative of a constant is
zero, we arrive at the equation
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4.2

Step 5. Find the rate at which the distance between the man and the plane is increasing when the plane is directly
over the radio tower. That is, find when Since the speed of the plane is we know

that We are not given an explicit value for however, since we are trying to find when

we can use the Pythagorean theorem to determine the distance when and the height
is Solving the equation

for we have at the time of interest. Using these values, we conclude that is a solution of
the equation

Therefore,

Note: When solving related-rates problems, it is important not to substitute values for the variables too soon. For
example, in step 3, we related the variable quantities and by the equation

Since the plane remains at a constant height, it is not necessary to introduce a variable for the height, and we are
allowed to use the constant 4000 to denote that quantity. However, the other two quantities are changing. If we
mistakenly substituted into the equation before differentiating, our equation would have been

After differentiating, our equation would become

As a result, we would incorrectly conclude that

What is the speed of the plane if the distance between the person and the plane is increasing at the rate of

We now return to the problem involving the rocket launch from the beginning of the chapter.

Example 4.3

Chapter Opener: A Rocket Launch
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Figure 4.4 (credit: modification of work by Steve Jurvetson,
Wikimedia Commons)

A rocket is launched so that it rises vertically. A camera is positioned from the launch pad. When the
rocket is above the launch pad, its velocity is Find the necessary rate of change of the
camera’s angle as a function of time so that it stays focused on the rocket.

Solution
Step 1. Draw a picture introducing the variables.

Figure 4.5 A camera is positioned 5000 ft from the launch pad of the rocket. The height of the
rocket and the angle of the camera are changing with respect to time. We denote those quantities
with the variables and respectively.

Let denote the height of the rocket above the launch pad and be the angle between the camera lens and the
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ground.

Step 2. We are trying to find the rate of change in the angle of the camera with respect to time when the rocket is
1000 ft off the ground. That is, we need to find when At that time, we know the velocity of the

rocket is

Step 3. Now we need to find an equation relating the two quantities that are changing with respect to time: and
How can we create such an equation? Using the fact that we have drawn a right triangle, it is natural to think

about trigonometric functions. Recall that is the ratio of the length of the opposite side of the triangle to the
length of the adjacent side. Thus, we have

This gives us the equation

Step 4. Differentiating this equation with respect to time we obtain

Step 5. We want to find when At this time, we know that We need to

determine Recall that is the ratio of the length of the hypotenuse to the length of the adjacent
side. We know the length of the adjacent side is To determine the length of the hypotenuse, we use the
Pythagorean theorem, where the length of one leg is the length of the other leg is and
the length of the hypotenuse is feet as shown in the following figure.

We see that

and we conclude that the hypotenuse is

Therefore, when we have

Recall from step 4 that the equation relating to our known values is

When we know that and Substituting these values into the
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4.3

previous equation, we arrive at the equation

Therefore,

What rate of change is necessary for the elevation angle of the camera if the camera is placed on the
ground at a distance of from the launch pad and the velocity of the rocket is 500 ft/sec when the rocket
is off the ground?

In the next example, we consider water draining from a cone-shaped funnel. We compare the rate at which the level of water
in the cone is decreasing with the rate at which the volume of water is decreasing.

Example 4.4

Water Draining from a Funnel

Water is draining from the bottom of a cone-shaped funnel at the rate of The height of the funnel
is 2 ft and the radius at the top of the funnel is At what rate is the height of the water in the funnel changing

when the height of the water is

Solution
Step 1: Draw a picture introducing the variables.

Figure 4.6 Water is draining from a funnel of height 2 ft and
radius 1 ft. The height of the water and the radius of water are
changing over time. We denote these quantities with the
variables and respectively.
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4.4

Let denote the height of the water in the funnel, denote the radius of the water at its surface, and denote
the volume of the water.

Step 2: We need to determine when We know that

Step 3: The volume of water in the cone is

From the figure, we see that we have similar triangles. Therefore, the ratio of the sides in the two triangles is the
same. Therefore, or Using this fact, the equation for volume can be simplified to

Step 4: Applying the chain rule while differentiating both sides of this equation with respect to time we obtain

Step 5: We want to find when Since water is leaving at the rate of we know that

Therefore,

which implies

It follows that

At what rate is the height of the water changing when the height of the water is
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4.1 EXERCISES
For the following exercises, find the quantities for the given
equation.

1. Find at and if

2. Find at and if

3. Find at and if

and

For the following exercises, sketch the situation if
necessary and used related rates to solve for the quantities.

4. [T] If two electrical resistors are connected in parallel,
the total resistance (measured in ohms, denoted by the
Greek capital letter omega, is given by the equation

If is increasing at a rate of

and decreases at a rate of at what rate

does the total resistance change when and

?

5. A 10-ft ladder is leaning against a wall. If the top of the
ladder slides down the wall at a rate of 2 ft/sec, how fast
is the bottom moving along the ground when the bottom of
the ladder is 5 ft from the wall?

6. A 25-ft ladder is leaning against a wall. If we push the
ladder toward the wall at a rate of 1 ft/sec, and the bottom
of the ladder is initially away from the wall, how
fast does the ladder move up the wall after we start
pushing?

7. Two airplanes are flying in the air at the same height:
airplane A is flying east at 250 mi/h and airplane B is flying
north at If they are both heading to the same
airport, located 30 miles east of airplane A and 40 miles
north of airplane B, at what rate is the distance between the
airplanes changing?

8. You and a friend are riding your bikes to a restaurant
that you think is east; your friend thinks the restaurant is
north. You both leave from the same point, with you riding
at 16 mph east and your friend riding north. After

you traveled at what rate is the distance between you
changing?

9. Two buses are driving along parallel freeways that are
apart, one heading east and the other heading west.

Assuming that each bus drives a constant find the

rate at which the distance between the buses is changing
when they are apart, heading toward each other.

10. A 6-ft-tall person walks away from a 10-ft lamppost at
a constant rate of What is the rate that the tip of
the shadow moves away from the pole when the person is

away from the pole?

11. Using the previous problem, what is the rate at which
the tip of the shadow moves away from the person when the
person is 10 ft from the pole?
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12. A 5-ft-tall person walks toward a wall at a rate of 2
ft/sec. A spotlight is located on the ground 40 ft from the
wall. How fast does the height of the person’s shadow on
the wall change when the person is 10 ft from the wall?

13. Using the previous problem, what is the rate at which
the shadow changes when the person is 10 ft from the wall,
if the person is walking away from the wall at a rate of 2 ft/
sec?

14. A helicopter starting on the ground is rising directly
into the air at a rate of 25 ft/sec. You are running on the
ground starting directly under the helicopter at a rate of 10
ft/sec. Find the rate of change of the distance between the
helicopter and yourself after 5 sec.

15. Using the previous problem, what is the rate at which
the distance between you and the helicopter is changing
when the helicopter has risen to a height of 60 ft in the air,
assuming that, initially, it was 30 ft above you?

For the following exercises, draw and label diagrams to
help solve the related-rates problems.

16. The side of a cube increases at a rate of m/sec. Find

the rate at which the volume of the cube increases when the
side of the cube is 4 m.

17. The volume of a cube decreases at a rate of 10 m3/s.
Find the rate at which the side of the cube changes when
the side of the cube is 2 m.

18. The radius of a circle increases at a rate of m/sec.
Find the rate at which the area of the circle increases when
the radius is 5 m.

19. The radius of a sphere decreases at a rate of m/sec.
Find the rate at which the surface area decreases when the
radius is 10 m.

20. The radius of a sphere increases at a rate of m/sec.
Find the rate at which the volume increases when the radius
is m.

21. The radius of a sphere is increasing at a rate of 9 cm/
sec. Find the radius of the sphere when the volume and the
radius of the sphere are increasing at the same numerical
rate.

22. The base of a triangle is shrinking at a rate of 1 cm/min
and the height of the triangle is increasing at a rate of 5 cm/
min. Find the rate at which the area of the triangle changes
when the height is 22 cm and the base is 10 cm.

23. A triangle has two constant sides of length 3 ft and 5
ft. The angle between these two sides is increasing at a rate
of 0.1 rad/sec. Find the rate at which the area of the triangle
is changing when the angle between the two sides is

24. A triangle has a height that is increasing at a rate of 2
cm/sec and its area is increasing at a rate of 4 cm2/sec. Find
the rate at which the base of the triangle is changing when
the height of the triangle is 4 cm and the area is 20 cm2.

For the following exercises, consider a right cone that is
leaking water. The dimensions of the conical tank are a
height of 16 ft and a radius of 5 ft.

25. How fast does the depth of the water change when the
water is 10 ft high if the cone leaks water at a rate of 10
ft3/min?

26. Find the rate at which the surface area of the water
changes when the water is 10 ft high if the cone leaks water
at a rate of 10 ft3/min.

27. If the water level is decreasing at a rate of 3 in/min
when the depth of the water is 8 ft, determine the rate at
which water is leaking out of the cone.

28. A vertical cylinder is leaking water at a rate of 1
ft3/sec. If the cylinder has a height of 10 ft and a radius of 1
ft, at what rate is the height of the water changing when the
height is 6 ft?

29. A cylinder is leaking water but you are unable to
determine at what rate. The cylinder has a height of 2 m
and a radius of 2 m. Find the rate at which the water is
leaking out of the cylinder if the rate at which the height is
decreasing is 10 cm/min when the height is 1 m.

30. A trough has ends shaped like isosceles triangles,
with width 3 m and height 4 m, and the trough is 10
m long. Water is being pumped into the trough at a rate
of At what rate does the height of the water
change when the water is 1 m deep?
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31. A tank is shaped like an upside-down square pyramid,
with base of 4 m by 4 m and a height of 12 m (see the
following figure). How fast does the height increase when
the water is 2 m deep if water is being pumped in at a rate
of m/sec?

For the following problems, consider a pool shaped like the
bottom half of a sphere, that is being filled at a rate of 25
ft3/min. The radius of the pool is 10 ft.

32. Find the rate at which the depth of the water is
changing when the water has a depth of 5 ft.

33. Find the rate at which the depth of the water is
changing when the water has a depth of 1 ft.

34. If the height is increasing at a rate of 1 in./sec when
the depth of the water is 2 ft, find the rate at which water is
being pumped in.

35. Gravel is being unloaded from a truck and falls into a
pile shaped like a cone at a rate of 10 ft3/min. The radius of
the cone base is three times the height of the cone. Find the
rate at which the height of the gravel changes when the pile
has a height of 5 ft.

36. Using a similar setup from the preceding problem, find
the rate at which the gravel is being unloaded if the pile is
5 ft high and the height is increasing at a rate of 4 in./min.

For the following exercises, draw the situations and solve
the related-rate problems.

37. You are stationary on the ground and are watching
a bird fly horizontally at a rate of m/sec. The bird is
located 40 m above your head. How fast does the angle of
elevation change when the horizontal distance between you
and the bird is 9 m?

38. You stand 40 ft from a bottle rocket on the ground and
watch as it takes off vertically into the air at a rate of 20 ft/
sec. Find the rate at which the angle of elevation changes
when the rocket is 30 ft in the air.

39. A lighthouse, L, is on an island 4 mi away from the
closest point, P, on the beach (see the following image). If
the lighthouse light rotates clockwise at a constant rate of
10 revolutions/min, how fast does the beam of light move
across the beach 2 mi away from the closest point on the
beach?

40. Using the same setup as the previous problem,
determine at what rate the beam of light moves across the
beach 1 mi away from the closest point on the beach.

41. You are walking to a bus stop at a right-angle corner.
You move north at a rate of 2 m/sec and are 20 m south
of the intersection. The bus travels west at a rate of 10 m/
sec away from the intersection – you have missed the bus!
What is the rate at which the angle between you and the bus
is changing when you are 20 m south of the intersection and
the bus is 10 m west of the intersection?

For the following exercises, refer to the figure of baseball
diamond, which has sides of 90 ft.
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42. [T] A batter hits a ball toward third base at 75 ft/sec
and runs toward first base at a rate of 24 ft/sec. At what rate
does the distance between the ball and the batter change
when 2 sec have passed?

43. [T] A batter hits a ball toward second base at 80 ft/sec
and runs toward first base at a rate of 30 ft/sec. At what rate
does the distance between the ball and the batter change
when the runner has covered one-third of the distance to
first base? (Hint: Recall the law of cosines.)

44. [T] A batter hits the ball and runs toward first base at
a speed of 22 ft/sec. At what rate does the distance between
the runner and second base change when the runner has run
30 ft?

45. [T] Runners start at first and second base. When the
baseball is hit, the runner at first base runs at a speed of
18 ft/sec toward second base and the runner at second base
runs at a speed of 20 ft/sec toward third base. How fast is
the distance between runners changing 1 sec after the ball
is hit?
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4.2 | Linear Approximations and Differentials

Learning Objectives
4.2.1 Describe the linear approximation to a function at a point.
4.2.2 Write the linearization of a given function.
4.2.3 Draw a graph that illustrates the use of differentials to approximate the change in a
quantity.
4.2.4 Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we
examine another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions
are the easiest functions with which to work, so they provide a useful tool for approximating function values. In addition,
the ideas presented in this section are generalized later in the text when we study how to approximate functions by higher-
degree polynomials Introduction to Power Series and Functions (http://cnx.org/content/m53760/latest/) .

Linear Approximation of a Function at a Point
Consider a function that is differentiable at a point Recall that the tangent line to the graph of at is given

by the equation

For example, consider the function at Since is differentiable at and we see

that Therefore, the tangent line to the graph of at is given by the equation

Figure 4.7(a) shows a graph of along with the tangent line to at Note that for near 2, the graph of

the tangent line is close to the graph of As a result, we can use the equation of the tangent line to approximate for

near 2. For example, if the value of the corresponding point on the tangent line is

The actual value of is given by

Therefore, the tangent line gives us a fairly good approximation of (Figure 4.7(b)). However, note that for values

of far from 2, the equation of the tangent line does not give us a good approximation. For example, if the

-value of the corresponding point on the tangent line is

whereas the value of the function at is
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Figure 4.7 (a) The tangent line to at provides a good approximation to for near 2.

(b) At the value of on the tangent line to is 0.475. The actual value of is

which is approximately 0.47619.

In general, for a differentiable function the equation of the tangent line to at can be used to approximate

for near Therefore, we can write

We call the linear function

(4.1)

the linear approximation, or tangent line approximation, of at This function is also known as the

linearization of at

To show how useful the linear approximation can be, we look at how to find the linear approximation for at

Example 4.5

Linear Approximation of

Find the linear approximation of at and use the approximation to estimate

Solution
Since we are looking for the linear approximation at using Equation 4.1 we know the linear
approximation is given by

We need to find and
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4.5

Therefore, the linear approximation is given by Figure 4.8.

Using the linear approximation, we can estimate by writing

Figure 4.8 The local linear approximation to at

provides an approximation to for near 9.

Analysis
Using a calculator, the value of to four decimal places is 3.0166. The value given by the linear
approximation, 3.0167, is very close to the value obtained with a calculator, so it appears that using this linear
approximation is a good way to estimate at least for near At the same time, it may seem odd to use

a linear approximation when we can just push a few buttons on a calculator to evaluate However, how
does the calculator evaluate The calculator uses an approximation! In fact, calculators and computers use
approximations all the time to evaluate mathematical expressions; they just use higher-degree approximations.

Find the local linear approximation to at Use it to approximate to five decimal

places.

Example 4.6

Linear Approximation of

Find the linear approximation of at and use it to approximate

Solution
First we note that since rad is equivalent to using the linear approximation at seems

reasonable. The linear approximation is given by
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4.6

We see that

Therefore, the linear approximation of at is given by Figure 4.9.

To estimate using we must first convert to radians. We have radians, so the

estimate for is given by

Figure 4.9 The linear approximation to at provides an approximation

to for near

Find the linear approximation for at

Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation
for at which can be used to estimate roots and powers for real numbers near 1. The same idea

can be extended to a function of the form to estimate roots and powers near a different number

Example 4.7

Approximating Roots and Powers

Find the linear approximation of at Use this approximation to estimate

Solution
The linear approximation at is given by
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4.7

Because

the linear approximation is given by Figure 4.10(a).

We can approximate by evaluating when We conclude that

Figure 4.10 (a) The linear approximation of at is (b) The actual value of is

1.030301. The linear approximation of at estimates to be 1.03.

Find the linear approximation of at without using the result from the preceding

example.

Differentials
We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the
amount a function value changes as a result of a small change in the input. To discuss this more formally, we define a related
concept: differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small
change in input values.

When we first looked at derivatives, we used the Leibniz notation to represent the derivative of with respect to

Although we used the expressions dy and dx in this notation, they did not have meaning on their own. Here we see a
meaning to the expressions dy and dx. Suppose is a differentiable function. Let dx be an independent variable that

can be assigned any nonzero real number, and define the dependent variable by

(4.2)

It is important to notice that is a function of both and The expressions dy and dx are called differentials. We can
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4.8

divide both sides of Equation 4.2 by which yields

(4.3)

This is the familiar expression we have used to denote a derivative. Equation 4.2 is known as the differential form of
Equation 4.3.

Example 4.8

Computing differentials

For each of the following functions, find dy and evaluate when and

a.

b.

Solution
The key step is calculating the derivative. When we have that, we can obtain dy directly.

a. Since we know and therefore

When and

b. Since This gives us

When and

For find

We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a
function resulting from a small change in input values. Consider a function that is differentiable at point Suppose

the input changes by a small amount. We are interested in how much the output changes. If changes from to

then the change in is (also denoted and the change in is given by

Instead of calculating the exact change in however, it is often easier to approximate the change in by using a linear

approximation. For near can be approximated by the linear approximation

Therefore, if is small,
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4.9

That is,

In other words, the actual change in the function if increases from to is approximately the difference

between and where is the linear approximation of at By definition of this difference

is equal to In summary,

Therefore, we can use the differential to approximate the change in if increases from to

We can see this in the following graph.

Figure 4.11 The differential is used to approximate the actual

change in if increases from to

We now take a look at how to use differentials to approximate the change in the value of the function that results from a
small change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values
of functions and the result is very close to what we would obtain with the more exact calculation.

Example 4.9

Approximating Change with Differentials

Let Compute and dy at if

Solution
The actual change in if changes from to is given by

The approximate change in is given by Since we have

For find and at if
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Calculating the Amount of Error
Any type of measurement is prone to a certain amount of error. In many applications, certain quantities are calculated based
on measurements. For example, the area of a circle is calculated by measuring the radius of the circle. An error in the
measurement of the radius leads to an error in the computed value of the area. Here we examine this type of error and study
how differentials can be used to estimate the error.

Consider a function with an input that is a measured quantity. Suppose the exact value of the measured quantity is

but the measured value is We say the measurement error is dx (or As a result, an error occurs in the calculated
quantity This type of error is known as a propagated error and is given by

Since all measurements are prone to some degree of error, we do not know the exact value of a measured quantity, so we
cannot calculate the propagated error exactly. However, given an estimate of the accuracy of a measurement, we can use
differentials to approximate the propagated error Specifically, if is a differentiable function at the propagated

error is

Unfortunately, we do not know the exact value However, we can use the measured value and estimate

In the next example, we look at how differentials can be used to estimate the error in calculating the volume of a box if we
assume the measurement of the side length is made with a certain amount of accuracy.

Example 4.10

Volume of a Cube

Suppose the side length of a cube is measured to be 5 cm with an accuracy of 0.1 cm.

a. Use differentials to estimate the error in the computed volume of the cube.

b. Compute the volume of the cube if the side length is (i) 4.9 cm and (ii) 5.1 cm to compare the estimated
error with the actual potential error.

Solution
a. The measurement of the side length is accurate to within cm. Therefore,

The volume of a cube is given by which leads to

Using the measured side length of 5 cm, we can estimate that

Therefore,

b. If the side length is actually 4.9 cm, then the volume of the cube is
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4.10

If the side length is actually 5.1 cm, then the volume of the cube is

Therefore, the actual volume of the cube is between 117.649 and 132.651. Since the side length is
measured to be 5 cm, the computed volume is Therefore, the error in the computed
volume is

That is,

We see the estimated error is relatively close to the actual potential error in the computed volume.

Estimate the error in the computed volume of a cube if the side length is measured to be 6 cm with an
accuracy of 0.2 cm.

The measurement error dx and the propagated error are absolute errors. We are typically interested in the size

of an error relative to the size of the quantity being measured or calculated. Given an absolute error for a particular

quantity, we define the relative error as where is the actual value of the quantity. The percentage error is the

relative error expressed as a percentage. For example, if we measure the height of a ladder to be 63 in. when the actual
height is 62 in., the absolute error is 1 in. but the relative error is or By comparison, if we measure the

width of a piece of cardboard to be 8.25 in. when the actual width is 8 in., our absolute error is in., whereas the relative

error is or Therefore, the percentage error in the measurement of the cardboard is larger, even though

0.25 in. is less than 1 in.

Example 4.11

Relative and Percentage Error

An astronaut using a camera measures the radius of Earth as 4000 mi with an error of mi. Let’s use
differentials to estimate the relative and percentage error of using this radius measurement to calculate the volume
of Earth, assuming the planet is a perfect sphere.

Solution
If the measurement of the radius is accurate to within we have

Since the volume of a sphere is given by we have
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4.11

Using the measured radius of 4000 mi, we can estimate

To estimate the relative error, consider Since we do not know the exact value of the volume use the

measured radius to estimate We obtain Therefore the relative error satisfies

which simplifies to

The relative error is 0.06 and the percentage error is

Determine the percentage error if the radius of Earth is measured to be 3950 mi with an error of
mi.
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4.2 EXERCISES
46. What is the linear approximation for any generic linear
function

47. Determine the necessary conditions such that the
linear approximation function is constant. Use a graph to
prove your result.

48. Explain why the linear approximation becomes less
accurate as you increase the distance between and
Use a graph to prove your argument.

49. When is the linear approximation exact?

For the following exercises, find the linear approximation
to near for the function.

50.

51.

52.

53.

54.

55.

For the following exercises, compute the values given
within 0.01 by deciding on the appropriate and

and evaluating Check your

answer using a calculator.

56. [T]

57. [T]

58. [T]

59. [T]

60. [T]

61. [T]

For the following exercises, determine the appropriate
and and evaluate

Calculate the numerical error in the linear approximations
that follow.

62. [T]

63. [T]

64. [T]

65. [T]

66. [T]

67. [T]

For the following exercises, find the differential of the
function.

68.

69.

70.

71.

For the following exercises, find the differential and
evaluate for the given and

72.

73.

74.

75.

76.

77.

For the following exercises, find the change in volume
or in surface area

78. if the sides of a cube change from 10 to 10.1.

79. if the sides of a cube change from to

80. if the radius of a sphere changes from by
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81. if the radius of a sphere changes from by

82. if a circular cylinder with changes height
from 3 cm to

83. if a circular cylinder of height 3 changes from
to

For the following exercises, use differentials to estimate the
maximum and relative error when computing the surface
area or volume.

84. A spherical golf ball is measured to have a radius of
with a possible measurement error of

What is the possible change in volume?

85. A pool has a rectangular base of 10 ft by 20 ft and a
depth of 6 ft. What is the change in volume if you only fill
it up to 5.5 ft?

86. An ice cream cone has height 4 in. and radius 1 in. If
the cone is 0.1 in. thick, what is the difference between the
volume of the cone, including the shell, and the volume of
the ice cream you can fit inside the shell?

For the following exercises, confirm the approximations by
using the linear approximation at

87.

88.

89.
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4.3 | Maxima and Minima

Learning Objectives
4.3.1 Define absolute extrema.
4.3.2 Define local extrema.
4.3.3 Explain how to find the critical points of a function over a closed interval.
4.3.4 Describe how to use critical points to locate absolute extrema over a closed interval.

Given a particular function, we are often interested in determining the largest and smallest values of the function. This
information is important in creating accurate graphs. Finding the maximum and minimum values of a function also
has practical significance because we can use this method to solve optimization problems, such as maximizing profit,
minimizing the amount of material used in manufacturing an aluminum can, or finding the maximum height a rocket can
reach. In this section, we look at how to use derivatives to find the largest and smallest values for a function.

Absolute Extrema
Consider the function over the interval As Therefore, the function

does not have a largest value. However, since for all real numbers and when the

function has a smallest value, 1, when We say that 1 is the absolute minimum of and it occurs at

We say that does not have an absolute maximum (see the following figure).

Figure 4.12 The given function has an absolute minimum of 1
at The function does not have an absolute maximum.

Definition

Let be a function defined over an interval and let We say has an absolute maximum on at if

for all We say has an absolute minimum on at if for all If has

an absolute maximum on at or an absolute minimum on at we say has an absolute extremum on at

Before proceeding, let’s note two important issues regarding this definition. First, the term absolute here does not refer to
absolute value. An absolute extremum may be positive, negative, or zero. Second, if a function has an absolute extremum

over an interval at the absolute extremum is The real number is a point in the domain at which the absolute

extremum occurs. For example, consider the function over the interval Since

for all real numbers we say has an absolute maximum over at The absolute maximum is
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It occurs at as shown in Figure 4.13(b).

A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure 4.13
shows several functions and some of the different possibilities regarding absolute extrema. However, the following theorem,
called the Extreme Value Theorem, guarantees that a continuous function over a closed, bounded interval has

both an absolute maximum and an absolute minimum.

Figure 4.13 Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of
Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a

bounded interval.

Theorem 4.1: Extreme Value Theorem

If is a continuous function over the closed, bounded interval then there is a point in at which has

an absolute maximum over and there is a point in at which has an absolute minimum over

The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis.
There are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the
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function must be continuous over a closed, bounded interval. If the interval is open or the function has even one point
of discontinuity, the function may not have an absolute maximum or absolute minimum over For example, consider the
functions shown in Figure 4.13(d), (e), and (f). All three of these functions are defined over bounded intervals. However,
the function in graph (e) is the only one that has both an absolute maximum and an absolute minimum over its domain.
The extreme value theorem cannot be applied to the functions in graphs (d) and (f) because neither of these functions is
continuous over a closed, bounded interval. Although the function in graph (d) is defined over the closed interval
the function is discontinuous at The function has an absolute maximum over but does not have an absolute
minimum. The function in graph (f) is continuous over the half-open interval but is not defined at and
therefore is not continuous over a closed, bounded interval. The function has an absolute minimum over but does
not have an absolute maximum over These two graphs illustrate why a function over a bounded interval may fail to
have an absolute maximum and/or absolute minimum.

Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in
determining where absolute extrema occur.

Local Extrema and Critical Points
Consider the function shown in Figure 4.14. The graph can be described as two mountains with a valley in the middle.

The absolute maximum value of the function occurs at the higher peak, at However, is also a point of
interest. Although is not the largest value of the value is larger than for all near 0. We say has a

local maximum at Similarly, the function does not have an absolute minimum, but it does have a local minimum

at because is less than for near 1.

Figure 4.14 This function has two local maxima and one

local minimum. The local maximum at is also the
absolute maximum.

Definition

A function has a local maximum at if there exists an open interval containing such that is contained

in the domain of and for all A function has a local minimum at if there exists an open

interval containing such that is contained in the domain of and for all A function

has a local extremum at if has a local maximum at or has a local minimum at

Note that if has an absolute extremum at and is defined over an interval containing then is also

considered a local extremum. If an absolute extremum for a function occurs at an endpoint, we do not consider that to be
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a local extremum, but instead refer to that as an endpoint extremum.

Given the graph of a function it is sometimes easy to see where a local maximum or local minimum occurs. However,

it is not always easy to see, since the interesting features on the graph of a function may not be visible because they occur at
a very small scale. Also, we may not have a graph of the function. In these cases, how can we use a formula for a function
to determine where these extrema occur?

To answer this question, let’s look at Figure 4.14 again. The local extrema occur at and Notice
that at and the derivative At the derivative does not exist, since the function

has a corner there. In fact, if has a local extremum at a point the derivative must satisfy one of the

following conditions: either or is undefined. Such a value is known as a critical point and it is important

in finding extreme values for functions.

Definition

Let be an interior point in the domain of We say that is a critical point of if or is

undefined.

As mentioned earlier, if has a local extremum at a point then must be a critical point of This fact is known

as Fermat’s theorem.

Theorem 4.2: Fermat’s Theorem

If has a local extremum at and is differentiable at then

Proof
Suppose has a local extremum at and is differentiable at We need to show that To do this, we

will show that and and therefore Since has a local extremum at has a local

maximum or local minimum at Suppose has a local maximum at The case in which has a local minimum

at can be handled similarly. There then exists an open interval such that for all Since is

differentiable at from the definition of the derivative, we know that

Since this limit exists, both one-sided limits also exist and equal Therefore,

(4.4)

and

(4.5)

Since is a local maximum, we see that for near Therefore, for near but

we have From Equation 4.4 we conclude that Similarly, it can be shown that

Therefore,

□

From Fermat’s theorem, we conclude that if has a local extremum at then either or is undefined.

In other words, local extrema can only occur at critical points.
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Note this theorem does not claim that a function must have a local extremum at a critical point. Rather, it states that

critical points are candidates for local extrema. For example, consider the function We have

when Therefore, is a critical point. However, is increasing over and thus does

not have a local extremum at In Figure 4.15, we see several different possibilities for critical points. In some of
these cases, the functions have local extrema at critical points, whereas in other cases the functions do not. Note that these
graphs do not show all possibilities for the behavior of a function at a critical point.

Figure 4.15 (a–e) A function has a critical point at if or is undefined. A function may or may not

have a local extremum at a critical point.

Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a
critical point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine
whether a critical point is associated with a local extremum.

Example 4.12

Locating Critical Points

For each of the following functions, find all critical points. Use a graphing utility to determine whether the
function has a local extremum at each of the critical points.

a.

b.

c.

Solution
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a. The derivative is defined for all real numbers Therefore, we only need to find

the values for where Since the critical points are

and From the graph of in Figure 4.16, we see that has a local maximum at

and a local minimum at

Figure 4.16 This function has a local maximum and a local
minimum.

b. Using the chain rule, we see the derivative is

Therefore, has critical points when and when We conclude that the critical points

are From the graph of in Figure 4.17, we see that has a local (and absolute) minimum

at but does not have a local extremum at or

Figure 4.17 This function has three critical points:

and The function has a local (and absolute)

minimum at but does not have extrema at the other two
critical points.

c. By the chain rule, we see that the derivative is

The derivative is defined everywhere. Therefore, we only need to find values for where

Solving we see that which implies Therefore, the critical points

are From the graph of in Figure 4.18, we see that has an absolute maximum at
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4.12

and an absolute minimum at Hence, has a local maximum at and a local minimum at

(Note that if has an absolute extremum over an interval at a point that is not an endpoint

of then has a local extremum at

Figure 4.18 This function has an absolute maximum and an
absolute minimum.

Find all critical points for

Locating Absolute Extrema
The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and
an absolute minimum. As shown in Figure 4.13, one or both of these absolute extrema could occur at an endpoint. If an
absolute extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute
extremum is a local extremum. Therefore, by Fermat’s Theorem, the point at which the local extremum occurs must
be a critical point. We summarize this result in the following theorem.

Theorem 4.3: Location of Absolute Extrema

Let be a continuous function over a closed, bounded interval The absolute maximum of over and the

absolute minimum of over must occur at endpoints of or at critical points of in

With this idea in mind, let’s examine a procedure for locating absolute extrema.

Problem-Solving Strategy: Locating Absolute Extrema over a Closed Interval

Consider a continuous function defined over the closed interval

1. Evaluate at the endpoints and

2. Find all critical points of that lie over the interval and evaluate at those critical points.

3. Compare all values found in (1) and (2). From Location of Absolute Extrema, the absolute extrema must
occur at endpoints or critical points. Therefore, the largest of these values is the absolute maximum of The

smallest of these values is the absolute minimum of
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Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous
functions.

Example 4.13

Locating Absolute Extrema

For each of the following functions, find the absolute maximum and absolute minimum over the specified interval
and state where those values occur.

a. over

b. over

Solution
a. Step 1. Evaluate at the endpoints and

Step 2. Since is defined for all real numbers Therefore, there are no critical

points where the derivative is undefined. It remains to check where Since

at and is in the interval is a candidate for an absolute

extremum of over We evaluate and find

Step 3. We set up the following table to compare the values found in steps 1 and 2.

( ) Conclusion

Absolute maximum

Absolute minimum

From the table, we find that the absolute maximum of over the interval [1, 3] is and it occurs at

The absolute minimum of over the interval [1, 3] is and it occurs at as shown in

the following graph.
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Figure 4.19 This function has both an absolute maximum and an absolute minimum.

b. Step 1. Evaluate at the endpoints and

Step 2. The derivative of is given by

for The derivative is zero when which implies The derivative is
undefined at Therefore, the critical points of are The point is an

endpoint, so we already evaluated in step 1. The point is not in the interval of interest, so

we need only evaluate We find that

Step 3. We compare the values found in steps 1 and 2, in the following table.

( ) Conclusion

Absolute maximum

Absolute minimum

We conclude that the absolute maximum of over the interval [0, 2] is zero, and it occurs at The

absolute minimum is −2, and it occurs at as shown in the following graph.
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4.13

Figure 4.20 This function has an absolute maximum at an
endpoint of the interval.

Find the absolute maximum and absolute minimum of over the interval

At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined
local extrema and determined that if a function has a local extremum at a point then must be a critical point of

However, being a critical point is not a sufficient condition for to have a local extremum at Later in this chapter,

we show how to determine whether a function actually has a local extremum at a critical point. First, however, we need to
introduce the Mean Value Theorem, which will help as we analyze the behavior of the graph of a function.
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4.3 EXERCISES
90. In precalculus, you learned a formula for the position
of the maximum or minimum of a quadratic equation

which was Prove this

formula using calculus.

91. If you are finding an absolute minimum over an
interval why do you need to check the endpoints?
Draw a graph that supports your hypothesis.

92. If you are examining a function over an interval
for and finite, is it possible not to have an

absolute maximum or absolute minimum?

93. When you are checking for critical points, explain
why you also need to determine points where is

undefined. Draw a graph to support your explanation.

94. Can you have a finite absolute maximum for
over Explain why or why

not using graphical arguments.

95. Can you have a finite absolute maximum for
over assuming a is

non-zero? Explain why or why not using graphical
arguments.

96. Let be the number of local minima and be the
number of local maxima. Can you create a function where

Draw a graph to support your explanation.

97. Is it possible to have more than one absolute
maximum? Use a graphical argument to prove your
hypothesis.

98. Is it possible to have no absolute minimum or
maximum for a function? If so, construct such a function.
If not, explain why this is not possible.

99. [T] Graph the function For which values

of on any infinite domain, will you have an absolute
minimum and absolute maximum?

For the following exercises, determine where the local and
absolute maxima and minima occur on the graph given.
Assume the graph represents the entirety of each function.

100.

101.

102.

103.

For the following problems, draw graphs of which

is continuous, over the interval with the following
properties:
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104. Absolute maximum at and absolute minima at

105. Absolute minimum at and absolute maximum
at

106. Absolute maximum at absolute minimum at
local maximum at and a critical point

that is not a maximum or minimum at

107. Absolute maxima at and local
minimum at and absolute minimum at

For the following exercises, find the critical points in the
domains of the following functions.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

For the following exercises, find the local and/or absolute
maxima for the functions over the specified domain.

118. over

119. over

120. over

121. over

122. over

123. over

124. over

125. over

126. over

127. over

128. over

For the following exercises, find the local and absolute
minima and maxima for the functions over

129.

130.

131.

132.

133.

134.

For the following functions, use a calculator to graph the
function and to estimate the absolute and local maxima and
minima. Then, solve for them explicitly.

135. [T]

136. [T]

137. [T]

138. [T]

139. [T]

140. A company that produces cell phones has a cost
function of where is cost
in dollars and is number of cell phones produced (in
thousands). How many units of cell phone (in thousands)
minimizes this cost function?
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141. A ball is thrown into the air and its position is given
by Find the height at which
the ball stops ascending. How long after it is thrown does
this happen?

For the following exercises, consider the production of
gold during the California gold rush (1848–1888). The

production of gold can be modeled by

where is the number of years since the rush began
and is ounces of gold produced (in

millions). A summary of the data is shown in the following
figure.

142. Find when the maximum (local and global) gold
production occurred, and the amount of gold produced
during that maximum.

143. Find when the minimum (local and global) gold
production occurred. What was the amount of gold
produced during this minimum?

Find the critical points, maxima, and minima for the
following piecewise functions.

144.

145.

For the following exercises, find the critical points of the
following generic functions. Are they maxima, minima, or
neither? State the necessary conditions.

146. given that

147. given that and a is an integer.
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4.4 | The Mean Value Theorem

Learning Objectives
4.4.1 Explain the meaning of Rolle’s theorem.
4.4.2 Describe the significance of the Mean Value Theorem.
4.4.3 State three important consequences of the Mean Value Theorem.

The Mean Value Theorem is one of the most important theorems in calculus. We look at some of its implications at the
end of this section. First, let’s start with a special case of the Mean Value Theorem, called Rolle’s theorem.

Rolle’s Theorem
Informally, Rolle’s theorem states that if the outputs of a differentiable function are equal at the endpoints of an interval,

then there must be an interior point where Figure 4.21 illustrates this theorem.

Figure 4.21 If a differentiable function f satisfies then its derivative must be zero at some point(s)

between and

Theorem 4.4: Rolle’s Theorem

Let be a continuous function over the closed interval and differentiable over the open interval such

that There then exists at least one such that

Proof
Let We consider three cases:

1. for all

2. There exists such that

3. There exists such that

Case 1: If for all then for all

Case 2: Since is a continuous function over the closed, bounded interval by the extreme value theorem, it has

an absolute maximum. Also, since there is a point such that the absolute maximum is greater than

Therefore, the absolute maximum does not occur at either endpoint. As a result, the absolute maximum must occur at an
interior point Because has a maximum at an interior point and is differentiable at by Fermat’s

theorem,
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Case 3: The case when there exists a point such that is analogous to case 2, with maximum replaced

by minimum.

□

An important point about Rolle’s theorem is that the differentiability of the function is critical. If is not differentiable,

even at a single point, the result may not hold. For example, the function is continuous over and

but for any as shown in the following figure.

Figure 4.22 Since is not differentiable at

the conditions of Rolle’s theorem are not satisfied. In

fact, the conclusion does not hold here; there is no

such that

Let’s now consider functions that satisfy the conditions of Rolle’s theorem and calculate explicitly the points where

Example 4.14

Using Rolle’s Theorem

For each of the following functions, verify that the function satisfies the criteria stated in Rolle’s theorem and find
all values in the given interval where

a. over

b. over

Solution
a. Since is a polynomial, it is continuous and differentiable everywhere. In addition,

Therefore, satisfies the criteria of Rolle’s theorem. We conclude that there exists at least one value

such that Since we see that

implies as shown in the following graph.
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4.14

Figure 4.23 This function is continuous and differentiable
over when

b. As in part a. is a polynomial and therefore is continuous and differentiable everywhere. Also,

That said, satisfies the criteria of Rolle’s theorem. Differentiating, we find that

Therefore, when Both points are in the interval and,

therefore, both points satisfy the conclusion of Rolle’s theorem as shown in the following graph.

Figure 4.24 For this polynomial over

at

Verify that the function defined over the interval satisfies the conditions of

Rolle’s theorem. Find all points guaranteed by Rolle’s theorem.
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The Mean Value Theorem and Its Meaning
Rolle’s theorem is a special case of the Mean Value Theorem. In Rolle’s theorem, we consider differentiable functions

defined on a closed interval with . The Mean Value Theorem generalizes Rolle’s theorem by considering

functions that do not necessarily have equal value at the endpoints. Consequently, we can view the Mean Value Theorem
as a slanted version of Rolle’s theorem (Figure 4.25). The Mean Value Theorem states that if is continuous over the

closed interval and differentiable over the open interval then there exists a point such that the

tangent line to the graph of at is parallel to the secant line connecting and

Figure 4.25 The Mean Value Theorem says that for a function
that meets its conditions, at some point the tangent line has the
same slope as the secant line between the ends. For this
function, there are two values and such that the tangent

line to at and has the same slope as the secant line.

Theorem 4.5: Mean Value Theorem

Let be continuous over the closed interval and differentiable over the open interval Then, there

exists at least one point such that

Proof
The proof follows from Rolle’s theorem by introducing an appropriate function that satisfies the criteria of Rolle’s theorem.
Consider the line connecting and Since the slope of that line is

and the line passes through the point the equation of that line can be written as

Let denote the vertical difference between the point and the point on that line. Therefore,
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Figure 4.26 The value is the vertical difference

between the point and the point on the secant

line connecting and

Since the graph of intersects the secant line when and we see that Since is a

differentiable function over is also a differentiable function over Furthermore, since is continuous

over is also continuous over Therefore, satisfies the criteria of Rolle’s theorem. Consequently, there

exists a point such that Since

we see that

Since we conclude that

□

In the next example, we show how the Mean Value Theorem can be applied to the function over the interval

The method is the same for other functions, although sometimes with more interesting consequences.

Example 4.15

Verifying that the Mean Value Theorem Applies

For over the interval show that satisfies the hypothesis of the Mean Value Theorem, and

therefore there exists at least one value such that is equal to the slope of the line connecting

and Find these values guaranteed by the Mean Value Theorem.

Solution
We know that is continuous over and differentiable over Therefore, satisfies the

hypotheses of the Mean Value Theorem, and there must exist at least one value such that is

equal to the slope of the line connecting and (Figure 4.27). To determine which value(s)
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of are guaranteed, first calculate the derivative of The derivative The slope of the line

connecting and is given by

We want to find such that That is, we want to find such that

Solving this equation for we obtain At this point, the slope of the tangent line equals the slope of the

line joining the endpoints.

Figure 4.27 The slope of the tangent line at is the same as the slope of the line segment
connecting and

One application that helps illustrate the Mean Value Theorem involves velocity. For example, suppose we drive a car for
1 h down a straight road with an average velocity of 45 mph. Let and denote the position and velocity of the
car, respectively, for h. Assuming that the position function is differentiable, we can apply the Mean Value
Theorem to conclude that, at some time the speed of the car was exactly

Example 4.16

Mean Value Theorem and Velocity

If a rock is dropped from a height of 100 ft, its position seconds after it is dropped until it hits the ground is
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4.15

given by the function

a. Determine how long it takes before the rock hits the ground.

b. Find the average velocity of the rock for when the rock is released and the rock hits the ground.

c. Find the time guaranteed by the Mean Value Theorem when the instantaneous velocity of the rock is

Solution

a. When the rock hits the ground, its position is Solving the equation for

we find that Since we are only considering the ball will hit the ground sec after

it is dropped.

b. The average velocity is given by

c. The instantaneous velocity is given by the derivative of the position function. Therefore, we need to find
a time such that Since is continuous over the interval

and differentiable over the interval by the Mean Value Theorem, there is guaranteed to be a
point such that

Taking the derivative of the position function we find that Therefore, the equation

reduces to Solving this equation for we have Therefore, sec after

the rock is dropped, the instantaneous velocity equals the average velocity of the rock during its free fall:
ft/sec.

Figure 4.28 At time sec, the velocity of the rock is
equal to its average velocity from the time it is dropped until it
hits the ground.

Suppose a ball is dropped from a height of 200 ft. Its position at time is Find the

time when the instantaneous velocity of the ball equals its average velocity.
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Corollaries of the Mean Value Theorem
Let’s now look at three corollaries of the Mean Value Theorem. These results have important consequences, which we use
in upcoming sections.

At this point, we know the derivative of any constant function is zero. The Mean Value Theorem allows us to conclude
that the converse is also true. In particular, if for all in some interval then is constant over that

interval. This result may seem intuitively obvious, but it has important implications that are not obvious, and we discuss
them shortly.

Theorem 4.6: Corollary 1: Functions with a Derivative of Zero

Let be differentiable over an interval If for all then constant for all

Proof
Since is differentiable over must be continuous over Suppose is not constant for all in Then there

exist where and Choose the notation so that Therefore,

Since is a differentiable function, by the Mean Value Theorem, there exists such that

Therefore, there exists such that which contradicts the assumption that for all

□

From Corollary 1: Functions with a Derivative of Zero, it follows that if two functions have the same derivative,
they differ by, at most, a constant.

Theorem 4.7: Corollary 2: Constant Difference Theorem

If and are differentiable over an interval and for all then for some

constant

Proof
Let Then, for all By Corollary 1, there is a constant such that

for all Therefore, for all

□

The third corollary of the Mean Value Theorem discusses when a function is increasing and when it is decreasing. Recall
that a function is increasing over if whenever whereas is decreasing over if

whenever Using the Mean Value Theorem, we can show that if the derivative of a function is

positive, then the function is increasing; if the derivative is negative, then the function is decreasing (Figure 4.29). We
make use of this fact in the next section, where we show how to use the derivative of a function to locate local maximum
and minimum values of the function, and how to determine the shape of the graph.

This fact is important because it means that for a given function if there exists a function such that

then, the only other functions that have a derivative equal to are for some constant We discuss this result

in more detail later in the chapter.
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Figure 4.29 If a function has a positive derivative over some interval then the function
increases over that interval if the derivative is negative over some interval then the
function decreases over that interval

Theorem 4.8: Corollary 3: Increasing and Decreasing Functions

Let be continuous over the closed interval and differentiable over the open interval

i. If for all then is an increasing function over

ii. If for all then is a decreasing function over

Proof
We will prove i.; the proof of ii. is similar. Suppose is not an increasing function on Then there exist and in

such that but Since is a differentiable function over by the Mean Value Theorem there exists

such that

Since we know that Also, tells us that We conclude that

However, for all This is a contradiction, and therefore must be an increasing function over

□
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4.4 EXERCISES
148. Why do you need continuity to apply the Mean Value
Theorem? Construct a counterexample.

149. Why do you need differentiability to apply the Mean
Value Theorem? Find a counterexample.

150. When are Rolle’s theorem and the Mean Value
Theorem equivalent?

151. If you have a function with a discontinuity, is it still
possible to have Draw such

an example or prove why not.

For the following exercises, determine over what intervals
(if any) the Mean Value Theorem applies. Justify your
answer.

152.

153.

154.

155.

156.

For the following exercises, graph the functions on a
calculator and draw the secant line that connects the
endpoints. Estimate the number of points such that

157. [T] over

158. [T] over

159. [T] over

160. [T]
over

For the following exercises, use the Mean Value Theorem
and find all points such that

161.

162.

163.

164.

165.

166.

For the following exercises, show there is no such that
Explain why the Mean Value

Theorem does not apply over the interval

167.

168.

169.

170. (Hint: This is called the floor function

and it is defined so that is the largest integer less than

or equal to

For the following exercises, determine whether the Mean
Value Theorem applies for the functions over the given
interval Justify your answer.

171. over

172. over

173. over

174. over

175. over

176. over

177. over

178. over

179. over

180. over
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181. over

For the following exercises, consider the roots of the
equation.

182. Show that the equation has

exactly one real root. What is it?

183. Find the conditions for exactly one root (double root)
for the equation

184. Find the conditions for to have one root.

Is it possible to have more than one root?

For the following exercises, use a calculator to graph the
function over the interval and graph the secant line
from to Use the calculator to estimate all values of
as guaranteed by the Mean Value Theorem. Then, find the
exact value of if possible, or write the final equation
and use a calculator to estimate to four digits.

185. [T] over

186. [T] over

187. [T] over

188. [T] over

189. [T] over

190. At 10:17 a.m., you pass a police car at 55 mph that
is stopped on the freeway. You pass a second police car at
55 mph at 10:53 a.m., which is located 39 mi from the first
police car. If the speed limit is 60 mph, can the police cite
you for speeding?

191. Two cars drive from one spotlight to the next, leaving
at the same time and arriving at the same time. Is there
ever a time when they are going the same speed? Prove or
disprove.

192. Show that and have the same

derivative. What can you say about

193. Show that and have the same

derivative. What can you say about
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4.5 | Derivatives and the Shape of a Graph

Learning Objectives
4.5.1 Explain how the sign of the first derivative affects the shape of a function’s graph.
4.5.2 State the first derivative test for critical points.
4.5.3 Use concavity and inflection points to explain how the sign of the second derivative affects
the shape of a function’s graph.
4.5.4 Explain the concavity test for a function over an open interval.
4.5.5 Explain the relationship between a function and its first and second derivatives.
4.5.6 State the second derivative test for local extrema.

Earlier in this chapter we stated that if a function has a local extremum at a point then must be a critical point

of However, a function is not guaranteed to have a local extremum at a critical point. For example, has a

critical point at since is zero at but does not have a local extremum at Using the

results from the previous section, we are now able to determine whether a critical point of a function actually corresponds
to a local extreme value. In this section, we also see how the second derivative provides information about the shape of a
graph by describing whether the graph of a function curves upward or curves downward.

The First Derivative Test
Corollary of the Mean Value Theorem showed that if the derivative of a function is positive over an interval then the
function is increasing over On the other hand, if the derivative of the function is negative over an interval then the
function is decreasing over as shown in the following figure.

Figure 4.30 Both functions are increasing over the interval
At each point the derivative Both

functions are decreasing over the interval At each point

the derivative
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A continuous function has a local maximum at point if and only if switches from increasing to decreasing at

point Similarly, has a local minimum at if and only if switches from decreasing to increasing at If is a

continuous function over an interval containing and differentiable over except possibly at the only way

can switch from increasing to decreasing (or vice versa) at point is if changes sign as increases through If

is differentiable at the only way that can change sign as increases through is if Therefore,

for a function that is continuous over an interval containing and differentiable over except possibly at the

only way can switch from increasing to decreasing (or vice versa) is if or is undefined. Consequently,

to locate local extrema for a function we look for points in the domain of such that or is

undefined. Recall that such points are called critical points of

Note that need not have a local extrema at a critical point. The critical points are candidates for local extrema only. In

Figure 4.31, we show that if a continuous function has a local extremum, it must occur at a critical point, but a function

may not have a local extremum at a critical point. We show that if has a local extremum at a critical point, then the sign

of switches as increases through that point.

Figure 4.31 The function has four critical points: The function has local maxima at

and and a local minimum at The function does not have a local extremum at The sign of

changes at all local extrema.

Using Figure 4.31, we summarize the main results regarding local extrema.

• If a continuous function has a local extremum, it must occur at a critical point

• The function has a local extremum at the critical point if and only if the derivative switches sign as

increases through

• Therefore, to test whether a function has a local extremum at a critical point we must determine the sign of
to the left and right of

This result is known as the first derivative test.
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Theorem 4.9: First Derivative Test

Suppose that is a continuous function over an interval containing a critical point If is differentiable over

except possibly at point then satisfies one of the following descriptions:

i. If changes sign from positive when to negative when then is a local maximum of

ii. If changes sign from negative when to positive when then is a local minimum of

iii. If has the same sign for and then is neither a local maximum nor a local minimum of

We can summarize the first derivative test as a strategy for locating local extrema.

Problem-Solving Strategy: Using the First Derivative Test

Consider a function that is continuous over an interval

1. Find all critical points of and divide the interval into smaller intervals using the critical points as

endpoints.

2. Analyze the sign of in each of the subintervals. If is continuous over a given subinterval (which is

typically the case), then the sign of in that subinterval does not change and, therefore, can be determined

by choosing an arbitrary test point in that subinterval and by evaluating the sign of at that test point. Use

the sign analysis to determine whether is increasing or decreasing over that interval.

3. Use First Derivative Test and the results of step to determine whether has a local maximum, a local

minimum, or neither at each of the critical points.

Now let’s look at how to use this strategy to locate all local extrema for particular functions.

Example 4.17

Using the First Derivative Test to Find Local Extrema

Use the first derivative test to find the location of all local extrema for Use a

graphing utility to confirm your results.

Solution

Step 1. The derivative is To find the critical points, we need to find where

Factoring the polynomial, we conclude that the critical points must satisfy

Therefore, the critical points are Now divide the interval into the smaller intervals

Step 2. Since is a continuous function, to determine the sign of over each subinterval, it suffices to

choose a point over each of the intervals and determine the sign of at each
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of these points. For example, let’s choose as test points.

Interval Test Point Sign of ( ) ( )( ) at Test Point Conclusion

is increasing.

is decreasing.

is increasing.

Step 3. Since switches sign from positive to negative as increases through has a local maximum at

Since switches sign from negative to positive as increases through has a local minimum at

These analytical results agree with the following graph.

Figure 4.32 The function has a maximum at and

a minimum at
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4.16 Use the first derivative test to locate all local extrema for

Example 4.18

Using the First Derivative Test

Use the first derivative test to find the location of all local extrema for Use a graphing

utility to confirm your results.

Solution
Step 1. The derivative is

The derivative when Therefore, at The derivative is

undefined at Therefore, we have three critical points: and Consequently,
divide the interval into the smaller intervals and

Step 2: Since is continuous over each subinterval, it suffices to choose a test point in each of the

intervals from step and determine the sign of at each of these points. The points

are test points for these intervals.

Interval Test Point
Sign of ( )

⎛
⎝

⎞
⎠ at Test Point

Conclusion

is decreasing.

is increasing.

is increasing.

is decreasing.

Step 3: Since is decreasing over the interval and increasing over the interval has a

local minimum at Since is increasing over the interval and the interval does not

have a local extremum at Since is increasing over the interval and decreasing over the interval

has a local maximum at The analytical results agree with the following graph.
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4.17

Figure 4.33 The function f has a local minimum at
and a local maximum at

Use the first derivative test to find all local extrema for

Concavity and Points of Inflection
We now know how to determine where a function is increasing or decreasing. However, there is another issue to consider
regarding the shape of the graph of a function. If the graph curves, does it curve upward or curve downward? This notion is
called the concavity of the function.

Figure 4.34(a) shows a function with a graph that curves upward. As increases, the slope of the tangent line

increases. Thus, since the derivative increases as increases, is an increasing function. We say this function is

concave up. Figure 4.34(b) shows a function that curves downward. As increases, the slope of the tangent line

decreases. Since the derivative decreases as increases, is a decreasing function. We say this function is concave

down.

Definition

Let be a function that is differentiable over an open interval If is increasing over we say is concave
up over If is decreasing over we say is concave down over
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Figure 4.34 (a), (c) Since is increasing over the interval we say

is concave up over (b), (d) Since is decreasing over the interval

we say is concave down over

In general, without having the graph of a function how can we determine its concavity? By definition, a function is

concave up if is increasing. From Corollary we know that if is a differentiable function, then is increasing

if its derivative Therefore, a function that is twice differentiable is concave up when Similarly,

a function is concave down if is decreasing. We know that a differentiable function is decreasing if its derivative

Therefore, a twice-differentiable function is concave down when Applying this logic is known

as the concavity test.

Theorem 4.10: Test for Concavity

Let be a function that is twice differentiable over an interval

i. If for all then is concave up over

ii. If for all then is concave down over

We conclude that we can determine the concavity of a function by looking at the second derivative of In addition, we

observe that a function can switch concavity (Figure 4.35). However, a continuous function can switch concavity only

at a point if or is undefined. Consequently, to determine the intervals where a function is concave

up and concave down, we look for those values of where or is undefined. When we have determined
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these points, we divide the domain of into smaller intervals and determine the sign of over each of these smaller

intervals. If changes sign as we pass through a point then changes concavity. It is important to remember that a

function may not change concavity at a point even if or is undefined. If, however, does change

concavity at a point and is continuous at we say the point is an inflection point of

Definition

If is continuous at and changes concavity at the point is an inflection point of

Figure 4.35 Since for the function is concave up over the interval

Since for the function is concave down over the interval

The point is an inflection point of

Example 4.19

Testing for Concavity

For the function determine all intervals where is concave up and all intervals

where is concave down. List all inflection points for Use a graphing utility to confirm your results.

Solution
To determine concavity, we need to find the second derivative The first derivative is

so the second derivative is If the function changes concavity, it

occurs either when or is undefined. Since is defined for all real numbers we need only

find where Solving the equation we see that is the only place where could

change concavity. We now test points over the intervals and to determine the concavity of

The points and are test points for these intervals.
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4.18

Interval Test Point Sign of ( ) at Test Point Conclusion

is concave down

is concave up.

We conclude that is concave down over the interval and concave up over the interval Since

changes concavity at the point is an inflection point. Figure 4.36 confirms the

analytical results.

Figure 4.36 The given function has a point of inflection at
where the graph changes concavity.

For find all intervals where is concave up and all intervals where is

concave down.

We now summarize, in Table 4.1, the information that the first and second derivatives of a function provide about the

graph of and illustrate this information in Figure 4.37.
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Sign of Sign of Is increasing or decreasing? Concavity

Positive Positive Increasing Concave up

Positive Negative Increasing Concave down

Negative Positive Decreasing Concave up

Negative Negative Decreasing Concave down

Table 4.1 What Derivatives Tell Us about Graphs

Figure 4.37 Consider a twice-differentiable function over an open interval If for all the

function is increasing over If for all the function is decreasing over If for all

the function is concave up. If for all the function is concave down on

The Second Derivative Test
The first derivative test provides an analytical tool for finding local extrema, but the second derivative can also be used to
locate extreme values. Using the second derivative can sometimes be a simpler method than using the first derivative.

We know that if a continuous function has a local extrema, it must occur at a critical point. However, a function need not
have a local extrema at a critical point. Here we examine how the second derivative test can be used to determine whether
a function has a local extremum at a critical point. Let be a twice-differentiable function such that and

is continuous over an open interval containing Suppose Since is continuous over for

all (Figure 4.38). Then, by Corollary is a decreasing function over Since we conclude that

for all if and if Therefore, by the first derivative test, has a local maximum

at On the other hand, suppose there exists a point such that but Since is continuous

over an open interval containing then for all (Figure 4.38). Then, by Corollary is an

increasing function over Since we conclude that for all if and if

Therefore, by the first derivative test, has a local minimum at
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Figure 4.38 Consider a twice-differentiable function such

that is continuous. Since and

there is an interval containing such that for all in

is increasing if and is decreasing if As a

result, has a local maximum at Since

and there is an interval containing such that

for all in is decreasing if and is increasing

if As a result, has a local minimum at

Theorem 4.11: Second Derivative Test

Suppose is continuous over an interval containing

i. If then has a local minimum at

ii. If then has a local maximum at

iii. If then the test is inconclusive.

Note that for case iii. when then may have a local maximum, local minimum, or neither at For

example, the functions and all have critical points at In each case, the

second derivative is zero at However, the function has a local minimum at whereas the function

has a local maximum at and the function does not have a local extremum at

Let’s now look at how to use the second derivative test to determine whether has a local maximum or local minimum at

a critical point where

Example 4.20

Using the Second Derivative Test

Use the second derivative to find the location of all local extrema for

Solution
To apply the second derivative test, we first need to find critical points where The derivative is
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Therefore, when

To determine whether has a local extrema at any of these points, we need to evaluate the sign of at these

points. The second derivative is

In the following table, we evaluate the second derivative at each of the critical points and use the second
derivative test to determine whether has a local maximum or local minimum at any of these points.

( ) Conclusion

Local maximum

Second derivative test is inconclusive

Local minimum

By the second derivative test, we conclude that has a local maximum at and has a local minimum

at The second derivative test is inconclusive at To determine whether has a local extrema at

we apply the first derivative test. To evaluate the sign of for and

let and be the two test points. Since and we conclude

that is decreasing on both intervals and, therefore, does not have a local extrema at as shown in the

following graph.
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4.19

Figure 4.39 The function has a local maximum at and a local minimum at

Consider the function The points satisfy Use the

second derivative test to determine whether has a local maximum or local minimum at those points.

We have now developed the tools we need to determine where a function is increasing and decreasing, as well as acquired
an understanding of the basic shape of the graph. In the next section we discuss what happens to a function as
At that point, we have enough tools to provide accurate graphs of a large variety of functions.
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4.5 EXERCISES
194. If is a critical point of when is there no

local maximum or minimum at Explain.

195. For the function is both an

inflection point and a local maximum/minimum?

196. For the function is an inflection

point?

197. Is it possible for a point to be both an inflection
point and a local extrema of a twice differentiable
function?

198. Why do you need continuity for the first derivative
test? Come up with an example.

199. Explain whether a concave-down function has to
cross for some value of

200. Explain whether a polynomial of degree can have
an inflection point.

For the following exercises, analyze the graphs of

then list all intervals where is increasing or decreasing.

201.

202.

203.

204.
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205.

For the following exercises, analyze the graphs of

then list all intervals where

a. is increasing and decreasing and

b. the minima and maxima are located.

206.

207.

208.

209.

210.

For the following exercises, analyze the graphs of

then list all inflection points and intervals that are

concave up and concave down.

211.

404 Chapter 4 | Applications of Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



212.

213.

214.

215.

For the following exercises, draw a graph that satisfies
the given specifications for the domain The
function does not have to be continuous or differentiable.

216. over

over

217. over

over for all

218. over

local maximum at local minima at

219. There is a local maximum at local minimum
at and the graph is neither concave up nor concave
down.

220. There are local maxima at the function is
concave up for all and the function remains positive for
all

For the following exercises, determine

a. intervals where is increasing or decreasing and

b. local minima and maxima of

221. over

222.

For the following exercises, determine a. intervals where

is concave up or concave down, and b. the inflection points
of

223.
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For the following exercises, determine

a. intervals where is increasing or decreasing,

b. local minima and maxima of

c. intervals where is concave up and concave

down, and

d. the inflection points of

224.

225.

226.

227.

228.

229.

230.

For the following exercises, determine

a. intervals where is increasing or decreasing,

b. local minima and maxima of

c. intervals where is concave up and concave

down, and

d. the inflection points of Sketch the curve, then

use a calculator to compare your answer. If you
cannot determine the exact answer analytically, use
a calculator.

231. [T] over

232. [T] over

233. [T] over

234. [T]

235. [T]

236. [T] over

237. over

238.

239.

240.

For the following exercises, interpret the sentences in terms
of

241. The population is growing more slowly. Here is

the population.

242. A bike accelerates faster, but a car goes faster. Here
Bike’s position minus Car’s position.

243. The airplane lands smoothly. Here is the plane’s

altitude.

244. Stock prices are at their peak. Here is the stock

price.

245. The economy is picking up speed. Here is a

measure of the economy, such as GDP.

For the following exercises, consider a third-degree
polynomial which has the properties

Determine whether the following

statements are true or false. Justify your answer.

246. for some

247. for some

248. There is no absolute maximum at

249. If has three roots, then it has inflection

point.

250. If has one inflection point, then it has three real

roots.
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4.6 | Limits at Infinity and Asymptotes

Learning Objectives
4.6.1 Calculate the limit of a function as increases or decreases without bound.

4.6.2 Recognize a horizontal asymptote on the graph of a function.
4.6.3 Estimate the end behavior of a function as increases or decreases without bound.

4.6.4 Recognize an oblique asymptote on the graph of a function.
4.6.5 Analyze a function and its derivatives to draw its graph.

We have shown how to use the first and second derivatives of a function to describe the shape of a graph. To graph a
function defined on an unbounded domain, we also need to know the behavior of as In this section, we

define limits at infinity and show how these limits affect the graph of a function. At the end of this section, we outline a
strategy for graphing an arbitrary function

Limits at Infinity
We begin by examining what it means for a function to have a finite limit at infinity. Then we study the idea of a function
with an infinite limit at infinity. Back in Introduction to Functions and Graphs, we looked at vertical asymptotes; in
this section we deal with horizontal and oblique asymptotes.

Limits at Infinity and Horizontal Asymptotes
Recall that means becomes arbitrarily close to as long as is sufficiently close to We can

extend this idea to limits at infinity. For example, consider the function As can be seen graphically in

Figure 4.40 and numerically in Table 4.2, as the values of get larger, the values of approach We say the limit

as approaches of is and write Similarly, for as the values get larger, the values

of approaches We say the limit as approaches of is and write

Figure 4.40 The function approaches the asymptote as approaches
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Table 4.2 Values of a function as

More generally, for any function we say the limit as of is if becomes arbitrarily close to

as long as is sufficiently large. In that case, we write Similarly, we say the limit as of

is if becomes arbitrarily close to as long as and is sufficiently large. In that case, we write

We now look at the definition of a function having a limit at infinity.

Definition

(Informal) If the values of become arbitrarily close to as becomes sufficiently large, we say the function

has a limit at infinity and write

If the values of becomes arbitrarily close to for as becomes sufficiently large, we say that the

function has a limit at negative infinity and write

If the values are getting arbitrarily close to some finite value as or the graph of approaches

the line In that case, the line is a horizontal asymptote of (Figure 4.41). For example, for the function

since the line is a horizontal asymptote of

Definition

If or we say the line is a horizontal asymptote of
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Figure 4.41 (a) As the values of are getting arbitrarily close to The line

is a horizontal asymptote of (b) As the values of are getting arbitrarily close to

The line is a horizontal asymptote of

A function cannot cross a vertical asymptote because the graph must approach infinity (or from at least one direction
as approaches the vertical asymptote. However, a function may cross a horizontal asymptote. In fact, a function may

cross a horizontal asymptote an unlimited number of times. For example, the function shown in Figure

4.42 intersects the horizontal asymptote an infinite number of times as it oscillates around the asymptote with ever-

decreasing amplitude.

Figure 4.42 The graph of crosses its

horizontal asymptote an infinite number of times.

The algebraic limit laws and squeeze theorem we introduced in Introduction to Limits also apply to limits at infinity. We
illustrate how to use these laws to compute several limits at infinity.

Example 4.21

Computing Limits at Infinity

For each of the following functions evaluate and Determine the horizontal

asymptote(s) for

a.

b.

c.
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Solution
a. Using the algebraic limit laws, we have

Similarly, Therefore, has a horizontal asymptote of and

approaches this horizontal asymptote as as shown in the following graph.

Figure 4.43 This function approaches a horizontal asymptote
as

b. Since for all we have

for all Also, since

we can apply the squeeze theorem to conclude that

Similarly,

Thus, has a horizontal asymptote of and approaches this horizontal asymptote

as as shown in the following graph.
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Figure 4.44 This function crosses its horizontal asymptote multiple times.

c. To evaluate and we first consider the graph of over the

interval as shown in the following graph.

Figure 4.45 The graph of has vertical asymptotes at

Since

it follows that

Similarly, since

it follows that

As a result, and are horizontal asymptotes of as shown in the following

graph.
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4.20

Figure 4.46 This function has two horizontal asymptotes.

Evaluate and Determine the horizontal asymptotes of if

any.

Infinite Limits at Infinity
Sometimes the values of a function become arbitrarily large as (or as In this case, we write

(or On the other hand, if the values of are negative but become arbitrarily large in

magnitude as (or as we write (or

For example, consider the function As seen in Table 4.3 and Figure 4.47, as the values

become arbitrarily large. Therefore, On the other hand, as the values of are

negative but become arbitrarily large in magnitude. Consequently,

Table 4.3 Values of a power function as
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Figure 4.47 For this function, the functional values approach infinity as

Definition

(Informal) We say a function has an infinite limit at infinity and write

if becomes arbitrarily large for sufficiently large. We say a function has a negative infinite limit at infinity and

write

if and becomes arbitrarily large for sufficiently large. Similarly, we can define infinite limits as

Formal Definitions
Earlier, we used the terms arbitrarily close, arbitrarily large, and sufficiently large to define limits at infinity informally.
Although these terms provide accurate descriptions of limits at infinity, they are not precise mathematically. Here are more
formal definitions of limits at infinity. We then look at how to use these definitions to prove results involving limits at
infinity.

Definition

(Formal) We say a function has a limit at infinity, if there exists a real number such that for all there

exists such that

for all In that case, we write

(see Figure 4.48).

We say a function has a limit at negative infinity if there exists a real number such that for all there

exists such that

for all In that case, we write
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4.21

Figure 4.48 For a function with a limit at infinity, for all

Earlier in this section, we used graphical evidence in Figure 4.40 and numerical evidence in Table 4.2 to conclude that
Here we use the formal definition of limit at infinity to prove this result rigorously.

Example 4.22 A Finite Limit at Infinity Example

Use the formal definition of limit at infinity to prove that

Solution

Let Let Therefore, for all we have

Use the formal definition of limit at infinity to prove that

We now turn our attention to a more precise definition for an infinite limit at infinity.

Definition

(Formal) We say a function has an infinite limit at infinity and write

if for all there exists an such that

for all (see Figure 4.49).

We say a function has a negative infinite limit at infinity and write

if for all there exists an such that
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4.22

for all

Similarly we can define limits as

Figure 4.49 For a function with an infinite limit at infinity, for
all

Earlier, we used graphical evidence (Figure 4.47) and numerical evidence (Table 4.3) to conclude that

Here we use the formal definition of infinite limit at infinity to prove that result.

Example 4.23 An Infinite Limit at Infinity

Use the formal definition of infinite limit at infinity to prove that

Solution

Let Let Then, for all we have

Therefore,

Use the formal definition of infinite limit at infinity to prove that

End Behavior
The behavior of a function as is called the function’s end behavior. At each of the function’s ends, the function
could exhibit one of the following types of behavior:

1. The function approaches a horizontal asymptote

2. The function or

3. The function does not approach a finite limit, nor does it approach or In this case, the function may have
some oscillatory behavior.
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Let’s consider several classes of functions here and look at the different types of end behaviors for these functions.

End Behavior for Polynomial Functions

Consider the power function where is a positive integer. From Figure 4.50 and Figure 4.51, we see that

and

Figure 4.50 For power functions with an even power of

Figure 4.51 For power functions with an odd power of

and

Using these facts, it is not difficult to evaluate and where is any constant and is a positive

integer. If the graph of is a vertical stretch or compression of and therefore

If the graph of is a vertical stretch or compression combined with a reflection about the -axis, and

therefore
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4.23

If in which case

Example 4.24

Limits at Infinity for Power Functions

For each function evaluate and

a.

b.

Solution

a. Since the coefficient of is the graph of involves a vertical stretch and reflection

of the graph of about the -axis. Therefore, and

b. Since the coefficient of is the graph of is a vertical stretch of the graph of

Therefore, and

Let Find

We now look at how the limits at infinity for power functions can be used to determine for any polynomial

function Consider a polynomial function

of degree so that Factoring, we see that

As all the terms inside the parentheses approach zero except the first term. We conclude that

For example, the function behaves like as as shown in Figure 4.52 and

Table 4.4.
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Figure 4.52 The end behavior of a polynomial is determined
by the behavior of the term with the largest exponent.

Table 4.4 A polynomial’s end behavior is determined by the term with the
largest exponent.

End Behavior for Algebraic Functions
The end behavior for rational functions and functions involving radicals is a little more complicated than for polynomials. In

Example 4.25, we show that the limits at infinity of a rational function depend on the relationship between

the degree of the numerator and the degree of the denominator. To evaluate the limits at infinity for a rational function,
we divide the numerator and denominator by the highest power of appearing in the denominator. This determines which
term in the overall expression dominates the behavior of the function at large values of

Example 4.25

Determining End Behavior for Rational Functions

For each of the following functions, determine the limits as and Then, use this information
to describe the end behavior of the function.

a. (Note: The degree of the numerator and the denominator are the same.)
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b. (Note: The degree of numerator is less than the degree of the denominator.)

c. (Note: The degree of numerator is greater than the degree of the denominator.)

Solution
a. The highest power of in the denominator is Therefore, dividing the numerator and denominator by

and applying the algebraic limit laws, we see that

Since we know that is a horizontal asymptote for this function as shown in

the following graph.

Figure 4.53 The graph of this rational function approaches a
horizontal asymptote as

b. Since the largest power of appearing in the denominator is divide the numerator and denominator

by After doing so and applying algebraic limit laws, we obtain

Therefore has a horizontal asymptote of as shown in the following graph.
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Figure 4.54 The graph of this rational function approaches
the horizontal asymptote as

c. Dividing the numerator and denominator by we have

As the denominator approaches As the numerator approaches As
the numerator approaches Therefore whereas

as shown in the following figure.

Figure 4.55 As the values As the

values
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4.24 Evaluate and use these limits to determine the end behavior of

Before proceeding, consider the graph of shown in Figure 4.56. As and the

graph of appears almost linear. Although is certainly not a linear function, we now investigate why the graph of

seems to be approaching a linear function. First, using long division of polynomials, we can write

Since as we conclude that

Therefore, the graph of approaches the line as This line is known as an oblique asymptote for

(Figure 4.56).

Figure 4.56 The graph of the rational function
approaches the oblique asymptote

We can summarize the results of Example 4.25 to make the following conclusion regarding end behavior for rational
functions. Consider a rational function

where

1. If the degree of the numerator is the same as the degree of the denominator then has a horizontal

asymptote of as

2. If the degree of the numerator is less than the degree of the denominator then has a horizontal

asymptote of as

3. If the degree of the numerator is greater than the degree of the denominator then does not have a
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horizontal asymptote. The limits at infinity are either positive or negative infinity, depending on the signs of the
leading terms. In addition, using long division, the function can be rewritten as

where the degree of is less than the degree of As a result, Therefore, the values

of approach zero as If the degree of is exactly one more than the degree of

the function is a linear function. In this case, we call an oblique asymptote.

Now let’s consider the end behavior for functions involving a radical.

Example 4.26

Determining End Behavior for a Function Involving a Radical

Find the limits as and for and describe the end behavior of

Solution
Let’s use the same strategy as we did for rational functions: divide the numerator and denominator by a power of

To determine the appropriate power of consider the expression in the denominator. Since

for large values of in effect appears just to the first power in the denominator. Therefore, we divide the
numerator and denominator by Then, using the fact that for for and

for all we calculate the limits as follows:

Therefore, approaches the horizontal asymptote as and the horizontal asymptote

as as shown in the following graph.
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4.25

Figure 4.57 This function has two horizontal asymptotes and it crosses one
of the asymptotes.

Evaluate

Determining End Behavior for Transcendental Functions
The six basic trigonometric functions are periodic and do not approach a finite limit as For example,
oscillates between (Figure 4.58). The tangent function has an infinite number of vertical asymptotes as

therefore, it does not approach a finite limit nor does it approach as as shown in Figure 4.59.

Figure 4.58 The function oscillates between

as

Figure 4.59 The function does not approach a

limit and does not approach as

Recall that for any base the function is an exponential function with domain and range

If is increasing over If is decreasing over For

the natural exponential function Therefore, is increasing on and the

Chapter 4 | Applications of Derivatives 423



range is The exponential function approaches as and approaches as as

shown in Table 4.5 and Figure 4.60.

Table 4.5 End behavior of the natural exponential function

Figure 4.60 The exponential function approaches zero as
and approaches as

Recall that the natural logarithm function is the inverse of the natural exponential function

Therefore, the domain of is and the range is The graph of is the reflection

of the graph of about the line Therefore, as and as as shown

in Figure 4.61 and Table 4.6.

Table 4.6 End behavior of the natural logarithm function

Figure 4.61 The natural logarithm function approaches as
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4.26

Example 4.27

Determining End Behavior for a Transcendental Function

Find the limits as and for and describe the end behavior of

Solution
To find the limit as divide the numerator and denominator by

As shown in Figure 4.60, as Therefore,

We conclude that and the graph of approaches the horizontal asymptote

as To find the limit as use the fact that as to conclude that

and therefore the graph of approaches the horizontal asymptote as

Find the limits as and for

Guidelines for Drawing the Graph of a Function
We now have enough analytical tools to draw graphs of a wide variety of algebraic and transcendental functions. Before
showing how to graph specific functions, let’s look at a general strategy to use when graphing any function.

Problem-Solving Strategy: Drawing the Graph of a Function

Given a function use the following steps to sketch a graph of

1. Determine the domain of the function.

2. Locate the - and -intercepts.

3. Evaluate and to determine the end behavior. If either of these limits is a finite number

then is a horizontal asymptote. If either of these limits is or determine whether has

an oblique asymptote. If is a rational function such that where the degree of the numerator

is greater than the degree of the denominator, then can be written as

where the degree of is less than the degree of The values of approach the values of as
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If is a linear function, it is known as an oblique asymptote.

4. Determine whether has any vertical asymptotes.

5. Calculate Find all critical points and determine the intervals where is increasing and where is

decreasing. Determine whether has any local extrema.

6. Calculate Determine the intervals where is concave up and where is concave down. Use this

information to determine whether has any inflection points. The second derivative can also be used as an

alternate means to determine or verify that has a local extremum at a critical point.

Now let’s use this strategy to graph several different functions. We start by graphing a polynomial function.

Example 4.28

Sketching a Graph of a Polynomial

Sketch a graph of

Solution
Step 1. Since is a polynomial, the domain is the set of all real numbers.

Step 2. When Therefore, the -intercept is To find the -intercepts, we need to solve

the equation gives us the -intercepts and

Step 3. We need to evaluate the end behavior of As and Therefore,

As and Therefore, To get

even more information about the end behavior of we can multiply the factors of When doing so, we see

that

Since the leading term of is we conclude that behaves like as

Step 4. Since is a polynomial function, it does not have any vertical asymptotes.

Step 5. The first derivative of is

Therefore, has two critical points: Divide the interval into the three smaller intervals:

and Then, choose test points and from these
intervals and evaluate the sign of at each of these test points, as shown in the following table.
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Interval Test
Point

Sign of Derivative
( ) ( )( )

Conclusion

is

increasing.

is

decreasing.

is

increasing.

From the table, we see that has a local maximum at and a local minimum at Evaluating

at those two points, we find that the local maximum value is and the local minimum value is

Step 6. The second derivative of is

The second derivative is zero at Therefore, to determine the concavity of divide the interval

into the smaller intervals and and choose test points and to
determine the concavity of on each of these smaller intervals as shown in the following table.

Interval Test Point Sign of ( ) Conclusion

is concave down.

is concave up.

We note that the information in the preceding table confirms the fact, found in step that has a local

maximum at and a local minimum at In addition, the information found in step —namely,

has a local maximum at and a local minimum at and at those points—combined

with the fact that changes sign only at confirms the results found in step on the concavity of

Combining this information, we arrive at the graph of shown in the following graph.
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4.27 Sketch a graph of

Example 4.29

Sketching a Rational Function

Sketch the graph of

Solution
Step 1. The function is defined as long as the denominator is not zero. Therefore, the domain is the set of all

real numbers except

Step 2. Find the intercepts. If then so is an intercept. If then

which implies Therefore, is the only intercept.

Step 3. Evaluate the limits at infinity. Since is a rational function, divide the numerator and denominator by

the highest power in the denominator: We obtain

Therefore, has a horizontal asymptote of as and

Step 4. To determine whether has any vertical asymptotes, first check to see whether the denominator has any

zeroes. We find the denominator is zero when To determine whether the lines or are
vertical asymptotes of evaluate and By looking at each one-sided limit as

we see that
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In addition, by looking at each one-sided limit as we find that

Step 5. Calculate the first derivative:

Critical points occur at points where or is undefined. We see that when

The derivative is not undefined at any point in the domain of However, are not in the domain of

Therefore, to determine where is increasing and where is decreasing, divide the interval into

four smaller intervals: and and choose a test point in each interval to

determine the sign of in each of these intervals. The values and

are good choices for test points as shown in the following table.

Interval Test Point Sign of ( )
⎛
⎝

⎞
⎠

Conclusion

is decreasing.

is decreasing.

is increasing.

is increasing.

From this analysis, we conclude that has a local minimum at but no local maximum.

Step 6. Calculate the second derivative:
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To determine the intervals where is concave up and where is concave down, we first need to find all points

where or is undefined. Since the numerator for any is never zero.

Furthermore, is not undefined for any in the domain of However, as discussed earlier, are

not in the domain of Therefore, to determine the concavity of we divide the interval into the

three smaller intervals and and choose a test point in each of these intervals
to evaluate the sign of in each of these intervals. The values and are possible

test points as shown in the following table.

Interval Test Point Sign of ( )
⎛
⎝

⎞
⎠

Conclusion

is concave down.

is concave up.

is concave down.

Combining all this information, we arrive at the graph of shown below. Note that, although changes

concavity at and there are no inflection points at either of these places because is not

continuous at or
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4.28 Sketch a graph of

Example 4.30

Sketching a Rational Function with an Oblique Asymptote

Sketch the graph of

Solution
Step 1. The domain of is the set of all real numbers except

Step 2. Find the intercepts. We can see that when so is the only intercept.

Step 3. Evaluate the limits at infinity. Since the degree of the numerator is one more than the degree of the
denominator, must have an oblique asymptote. To find the oblique asymptote, use long division of polynomials

to write

Since as approaches the line as The line is

an oblique asymptote for

Step 4. To check for vertical asymptotes, look at where the denominator is zero. Here the denominator is zero at
Looking at both one-sided limits as we find

Therefore, is a vertical asymptote, and we have determined the behavior of as approaches from

the right and the left.
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Step 5. Calculate the first derivative:

We have when Therefore, and are critical points. Since

is undefined at we need to divide the interval into the smaller intervals
and and choose a test point from each interval to evaluate the sign of in each of these

smaller intervals. For example, let and be the test points as shown in the

following table.

Interval Test Point Sign of ( )
( )

( )
( )

Conclusion

is increasing.

is decreasing.

is decreasing.

is increasing.

From this table, we see that has a local maximum at and a local minimum at The value of

at the local maximum is and the value of at the local minimum is Therefore, and

are important points on the graph.

Step 6. Calculate the second derivative:

We see that is never zero or undefined for in the domain of Since is undefined at to

check concavity we just divide the interval into the two smaller intervals and and
choose a test point from each interval to evaluate the sign of in each of these intervals. The values
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4.29

and are possible test points as shown in the following table.

Interval Test Point Sign of ( )
( )

Conclusion

is concave down.

is concave up.

From the information gathered, we arrive at the following graph for

Find the oblique asymptote for

Example 4.31

Sketching the Graph of a Function with a Cusp

Sketch a graph of

Solution

Step 1. Since the cube-root function is defined for all real numbers and the domain

of is all real numbers.

Step 2: To find the -intercept, evaluate Since the -intercept is To find the

-intercept, solve The solution of this equation is so the -intercept is
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Step 3: Since the function continues to grow without bound as and

Step 4: The function has no vertical asymptotes.

Step 5: To determine where is increasing or decreasing, calculate We find

This function is not zero anywhere, but it is undefined when Therefore, the only critical point is
Divide the interval into the smaller intervals and and choose test points in each
of these intervals to determine the sign of in each of these smaller intervals. Let and be the

test points as shown in the following table.

Interval Test Point Sign of ( )
( )

Conclusion

is decreasing.

is increasing.

We conclude that has a local minimum at Evaluating at we find that the value of at the

local minimum is zero. Note that is undefined, so to determine the behavior of the function at this critical

point, we need to examine Looking at the one-sided limits, we have

Therefore, has a cusp at

Step 6: To determine concavity, we calculate the second derivative of

We find that is defined for all but is undefined when Therefore, divide the interval

into the smaller intervals and and choose test points to evaluate the sign of in each of

these intervals. As we did earlier, let and be test points as shown in the following table.

Interval Test Point Sign of ( )
( )

Conclusion

is concave down.

is concave down.
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4.30

From this table, we conclude that is concave down everywhere. Combining all of this information, we arrive

at the following graph for

Consider the function Determine the point on the graph where a cusp is located.

Determine the end behavior of
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4.6 EXERCISES
For the following exercises, examine the graphs. Identify
where the vertical asymptotes are located.

251.

252.

253.

254.

255.

For the following functions determine whether

there is an asymptote at Justify your answer
without graphing on a calculator.

256.

257.

258.

259.

260.

For the following exercises, evaluate the limit.

261.
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262.

263.

264.

265.

266.

267.

268.

269.

270.

For the following exercises, find the horizontal and vertical
asymptotes.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

For the following exercises, construct a function that

has the given asymptotes.

285. and

286. and

287.

288.

For the following exercises, graph the function on a
graphing calculator on the window and
estimate the horizontal asymptote or limit. Then, calculate
the actual horizontal asymptote or limit.

289. [T]

290. [T]

291. [T]

292. [T]

293. [T]

For the following exercises, draw a graph of the functions
without using a calculator. Be sure to notice all important
features of the graph: local maxima and minima, inflection
points, and asymptotic behavior.

294.

295.

296.

297.
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298.

299.

300.

301. on

302.

303.

304.

305.

306. For to have an asymptote at

then the polynomials and must have what
relation?

307. For to have an asymptote at

then the polynomials and must have what
relation?

308. If has asymptotes at and then

has what asymptotes?

309. Both and have

asymptotes at and What is the most obvious

difference between these two functions?

310. True or false: Every ratio of polynomials has vertical
asymptotes.
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4.7 | Applied Optimization Problems

Learning Objectives
4.7.1 Set up and solve optimization problems in several applied fields.

One common application of calculus is calculating the minimum or maximum value of a function. For example, companies
often want to minimize production costs or maximize revenue. In manufacturing, it is often desirable to minimize the
amount of material used to package a product with a certain volume. In this section, we show how to set up these types of
minimization and maximization problems and solve them by using the tools developed in this chapter.

Solving Optimization Problems over a Closed, Bounded Interval
The basic idea of the optimization problems that follow is the same. We have a particular quantity that we are interested
in maximizing or minimizing. However, we also have some auxiliary condition that needs to be satisfied. For example, in
Example 4.32, we are interested in maximizing the area of a rectangular garden. Certainly, if we keep making the side
lengths of the garden larger, the area will continue to become larger. However, what if we have some restriction on how
much fencing we can use for the perimeter? In this case, we cannot make the garden as large as we like. Let’s look at how
we can maximize the area of a rectangle subject to some constraint on the perimeter.

Example 4.32

Maximizing the Area of a Garden

A rectangular garden is to be constructed using a rock wall as one side of the garden and wire fencing for the
other three sides (Figure 4.62). Given ft of wire fencing, determine the dimensions that would create a
garden of maximum area. What is the maximum area?

Figure 4.62 We want to determine the measurements and
that will create a garden with a maximum area using ft

of fencing.

Solution
Let denote the length of the side of the garden perpendicular to the rock wall and denote the length of the

side parallel to the rock wall. Then the area of the garden is
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We want to find the maximum possible area subject to the constraint that the total fencing is From Figure
4.62, the total amount of fencing used will be Therefore, the constraint equation is

Solving this equation for we have Thus, we can write the area as

Before trying to maximize the area function we need to determine the domain under
consideration. To construct a rectangular garden, we certainly need the lengths of both sides to be positive.
Therefore, we need and Since if then Therefore, we are trying

to determine the maximum value of for over the open interval We do not know that a function
necessarily has a maximum value over an open interval. However, we do know that a continuous function has
an absolute maximum (and absolute minimum) over a closed interval. Therefore, let’s consider the function

over the closed interval If the maximum value occurs at an interior point, then
we have found the value in the open interval that maximizes the area of the garden. Therefore, we
consider the following problem:

Maximize over the interval

As mentioned earlier, since is a continuous function on a closed, bounded interval, by the extreme value
theorem, it has a maximum and a minimum. These extreme values occur either at endpoints or critical points. At
the endpoints, Since the area is positive for all in the open interval the maximum must
occur at a critical point. Differentiating the function we obtain

Therefore, the only critical point is (Figure 4.63). We conclude that the maximum area must occur when
Then we have To maximize the area of the garden, let ft

and The area of this garden is

Figure 4.63 To maximize the area of the garden, we need to find the
maximum value of the function
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4.31 Determine the maximum area if we want to make the same rectangular garden as in Figure 4.63, but
we have ft of fencing.

Now let’s look at a general strategy for solving optimization problems similar to Example 4.32.

Problem-Solving Strategy: Solving Optimization Problems

1. Introduce all variables. If applicable, draw a figure and label all variables.

2. Determine which quantity is to be maximized or minimized, and for what range of values of the other variables
(if this can be determined at this time).

3. Write a formula for the quantity to be maximized or minimized in terms of the variables. This formula may
involve more than one variable.

4. Write any equations relating the independent variables in the formula from step Use these equations to
write the quantity to be maximized or minimized as a function of one variable.

5. Identify the domain of consideration for the function in step based on the physical problem to be solved.

6. Locate the maximum or minimum value of the function from step This step typically involves looking for
critical points and evaluating a function at endpoints.

Now let’s apply this strategy to maximize the volume of an open-top box given a constraint on the amount of material to be
used.

Example 4.33

Maximizing the Volume of a Box

An open-top box is to be made from a in. by in. piece of cardboard by removing a square from each
corner of the box and folding up the flaps on each side. What size square should be cut out of each corner to get
a box with the maximum volume?

Solution
Step 1: Let be the side length of the square to be removed from each corner (Figure 4.64). Then, the
remaining four flaps can be folded up to form an open-top box. Let be the volume of the resulting box.
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Figure 4.64 A square with side length inches is removed from each
corner of the piece of cardboard. The remaining flaps are folded to form an
open-top box.

Step 2: We are trying to maximize the volume of a box. Therefore, the problem is to maximize

Step 3: As mentioned in step are trying to maximize the volume of a box. The volume of a box is
where are the length, width, and height, respectively.

Step 4: From Figure 4.64, we see that the height of the box is inches, the length is inches, and the
width is inches. Therefore, the volume of the box is

Step 5: To determine the domain of consideration, let’s examine Figure 4.64. Certainly, we need
Furthermore, the side length of the square cannot be greater than or equal to half the length of the shorter side,
in.; otherwise, one of the flaps would be completely cut off. Therefore, we are trying to determine whether there
is a maximum volume of the box for over the open interval Since is a continuous function over
the closed interval we know will have an absolute maximum over the closed interval. Therefore,
we consider over the closed interval and check whether the absolute maximum occurs at an interior
point.

Step 6: Since is a continuous function over the closed, bounded interval must have an absolute
maximum (and an absolute minimum). Since at the endpoints and for the
maximum must occur at a critical point. The derivative is

To find the critical points, we need to solve the equation

Dividing both sides of this equation by the problem simplifies to solving the equation

Using the quadratic formula, we find that the critical points are
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Since is not in the domain of consideration, the only critical point we need to consider is
Therefore, the volume is maximized if we let The maximum volume is

as shown in the following graph.

Figure 4.65 Maximizing the volume of the box leads to finding the maximum value of a
cubic polynomial.

Watch a video (http://www.openstax.org/l/20_boxvolume) about optimizing the volume of a box.

Suppose the dimensions of the cardboard in Example 4.33 are 20 in. by 30 in. Let be the side length
of each square and write the volume of the open-top box as a function of Determine the domain of
consideration for

Example 4.34

Minimizing Travel Time

An island is due north of its closest point along a straight shoreline. A visitor is staying at a cabin on the
shore that is west of that point. The visitor is planning to go from the cabin to the island. Suppose the
visitor runs at a rate of and swims at a rate of How far should the visitor run before swimming

to minimize the time it takes to reach the island?

Solution
Step 1: Let be the distance running and let be the distance swimming (Figure 4.66). Let be the time it

takes to get from the cabin to the island.
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Figure 4.66 How can we choose and to minimize the travel time from

the cabin to the island?

Step 2: The problem is to minimize

Step 3: To find the time spent traveling from the cabin to the island, add the time spent running and the time spent
swimming. Since Distance Rate Time the time spent running is

and the time spent swimming is

Therefore, the total time spent traveling is

Step 4: From Figure 4.66, the line segment of miles forms the hypotenuse of a right triangle with legs

of length and Therefore, by the Pythagorean theorem, and we obtain

Thus, the total time spent traveling is given by the function

Step 5: From Figure 4.66, we see that Therefore, is the domain of consideration.

Step 6: Since is a continuous function over a closed, bounded interval, it has a maximum and a minimum.
Let’s begin by looking for any critical points of over the interval The derivative is

If then
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4.33

Therefore,

Squaring both sides of this equation, we see that if satisfies this equation, then must satisfy

which implies

We conclude that if is a critical point, then satisfies

Therefore, the possibilities for critical points are

Since is not in the domain, it is not a possibility for a critical point. On the other hand,

is in the domain. Since we squared both sides of Equation 4.6 to arrive at the possible critical
points, it remains to verify that satisfies Equation 4.6. Since does satisfy that
equation, we conclude that is a critical point, and it is the only one. To justify that the time is
minimized for this value of we just need to check the values of at the endpoints and

and compare them with the value of at the critical point We find that

and whereas Therefore, we conclude that has a local minimum at

mi.

Suppose the island is mi from shore, and the distance from the cabin to the point on the shore closest
to the island is Suppose a visitor swims at the rate of and runs at a rate of Let

denote the distance the visitor will run before swimming, and find a function for the time it takes the visitor to
get from the cabin to the island.

In business, companies are interested in maximizing revenue. In the following example, we consider a scenario in which a
company has collected data on how many cars it is able to lease, depending on the price it charges its customers to rent a
car. Let’s use these data to determine the price the company should charge to maximize the amount of money it brings in.

Example 4.35

Maximizing Revenue

Owners of a car rental company have determined that if they charge customers dollars per day to rent a

car, where the number of cars they rent per day can be modeled by the linear function
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If they charge per day or less, they will rent all their cars. If they charge per

day or more, they will not rent any cars. Assuming the owners plan to charge customers between $50 per day and
per day to rent a car, how much should they charge to maximize their revenue?

Solution
Step 1: Let be the price charged per car per day and let be the number of cars rented per day. Let be the

revenue per day.

Step 2: The problem is to maximize

Step 3: The revenue (per day) is equal to the number of cars rented per day times the price charged per car per
day—that is,

Step 4: Since the number of cars rented per day is modeled by the linear function the

revenue can be represented by the function

Step 5: Since the owners plan to charge between per car per day and per car per day, the problem is
to find the maximum revenue for in the closed interval

Step 6: Since is a continuous function over the closed, bounded interval it has an absolute
maximum (and an absolute minimum) in that interval. To find the maximum value, look for critical points.
The derivative is Therefore, the critical point is When

When When Therefore, the absolute

maximum occurs at The car rental company should charge per day per car to maximize

revenue as shown in the following figure.

Figure 4.67 To maximize revenue, a car rental company has to
balance the price of a rental against the number of cars people
will rent at that price.

A car rental company charges its customers dollars per day, where It has found that

the number of cars rented per day can be modeled by the linear function How much should

the company charge each customer to maximize revenue?

Example 4.36
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Maximizing the Area of an Inscribed Rectangle

A rectangle is to be inscribed in the ellipse

What should the dimensions of the rectangle be to maximize its area? What is the maximum area?

Solution
Step 1: For a rectangle to be inscribed in the ellipse, the sides of the rectangle must be parallel to the axes. Let
be the length of the rectangle and be its width. Let be the area of the rectangle.

Figure 4.68 We want to maximize the area of a rectangle inscribed in an
ellipse.

Step 2: The problem is to maximize

Step 3: The area of the rectangle is

Step 4: Let be the corner of the rectangle that lies in the first quadrant, as shown in Figure 4.68. We can

write length and width Since and we have Therefore,

the area is

Step 5: From Figure 4.68, we see that to inscribe a rectangle in the ellipse, the -coordinate of the corner in
the first quadrant must satisfy Therefore, the problem reduces to looking for the maximum value of

over the open interval Since will have an absolute maximum (and absolute minimum) over

the closed interval we consider over the interval If the absolute maximum
occurs at an interior point, then we have found an absolute maximum in the open interval.

Step 6: As mentioned earlier, is a continuous function over the closed, bounded interval Therefore,
it has an absolute maximum (and absolute minimum). At the endpoints and For

Therefore, the maximum must occur at a critical point. Taking the derivative of
we obtain
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To find critical points, we need to find where We can see that if is a solution of

then must satisfy

Therefore, Thus, are the possible solutions of Equation 4.7. Since we are considering

over the interval is a possibility for a critical point, but is not. Therefore, we check

whether is a solution of Equation 4.7. Since is a solution of Equation 4.7, we conclude that
is the only critical point of in the interval Therefore, must have an absolute maximum at the

critical point To determine the dimensions of the rectangle, we need to find the length and the width
If then

Therefore, the dimensions of the rectangle are and The area of this

rectangle is

Modify the area function if the rectangle is to be inscribed in the unit circle What is the

domain of consideration?

Solving Optimization Problems when the Interval Is Not Closed or Is
Unbounded
In the previous examples, we considered functions on closed, bounded domains. Consequently, by the extreme value
theorem, we were guaranteed that the functions had absolute extrema. Let’s now consider functions for which the domain
is neither closed nor bounded.

Many functions still have at least one absolute extrema, even if the domain is not closed or the domain is unbounded. For
example, the function over has an absolute minimum of at Therefore, we can still

consider functions over unbounded domains or open intervals and determine whether they have any absolute extrema. In
the next example, we try to minimize a function over an unbounded domain. We will see that, although the domain of
consideration is the function has an absolute minimum.

In the following example, we look at constructing a box of least surface area with a prescribed volume. It is not difficult to
show that for a closed-top box, by symmetry, among all boxes with a specified volume, a cube will have the smallest surface
area. Consequently, we consider the modified problem of determining which open-topped box with a specified volume has
the smallest surface area.
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Example 4.37

Minimizing Surface Area

A rectangular box with a square base, an open top, and a volume of in.3 is to be constructed. What should
the dimensions of the box be to minimize the surface area of the box? What is the minimum surface area?

Solution
Step 1: Draw a rectangular box and introduce the variable to represent the length of each side of the square
base; let represent the height of the box. Let denote the surface area of the open-top box.

Figure 4.69 We want to minimize the surface area of a
square-based box with a given volume.

Step 2: We need to minimize the surface area. Therefore, we need to minimize

Step 3: Since the box has an open top, we need only determine the area of the four vertical sides and the base.
The area of each of the four vertical sides is The area of the base is Therefore, the surface area of the

box is

Step 4: Since the volume of this box is and the volume is given as the constraint equation is

Solving the constraint equation for we have Therefore, we can write the surface area as a function

of only:

Therefore,

Step 5: Since we are requiring that we cannot have Therefore, we need On the

other hand, is allowed to have any positive value. Note that as becomes large, the height of the box

becomes correspondingly small so that Similarly, as becomes small, the height of the box

becomes correspondingly large. We conclude that the domain is the open, unbounded interval Note that,
unlike the previous examples, we cannot reduce our problem to looking for an absolute maximum or absolute
minimum over a closed, bounded interval. However, in the next step, we discover why this function must have an
absolute minimum over the interval

Step 6: Note that as Also, as Since is a continuous function
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that approaches infinity at the ends, it must have an absolute minimum at some This minimum must
occur at a critical point of The derivative is

Therefore, when Solving this equation for we obtain so

Since this is the only critical point of the absolute minimum must occur at

(see Figure 4.70). When Therefore, the dimensions of the box should be

and With these dimensions, the surface area is

Figure 4.70 We can use a graph to determine the dimensions
of a box of given the volume and the minimum surface area.

Consider the same open-top box, which is to have volume Suppose the cost of the material for

the base is and the cost of the material for the sides is and we are trying to minimize the
cost of this box. Write the cost as a function of the side lengths of the base. (Let be the side length of the base
and be the height of the box.)
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4.7 EXERCISES
For the following exercises, answer by proof,
counterexample, or explanation.

311. When you find the maximum for an optimization
problem, why do you need to check the sign of the
derivative around the critical points?

312. Why do you need to check the endpoints for
optimization problems?

313. True or False. For every continuous nonlinear
function, you can find the value that maximizes the
function.

314. True or False. For every continuous nonconstant
function on a closed, finite domain, there exists at least one

that minimizes or maximizes the function.

For the following exercises, set up and evaluate each
optimization problem.

315. To carry a suitcase on an airplane, the length
height of the box must be less than or equal

to Assuming the height is fixed, show that the

maximum volume is What height

allows you to have the largest volume?

316. You are constructing a cardboard box with the
dimensions You then cut equal-size squares

from each corner so you may fold the edges. What are the
dimensions of the box with the largest volume?

317. Find the positive integer that minimizes the sum of
the number and its reciprocal.

318. Find two positive integers such that their sum is
and minimize and maximize the sum of their squares.

For the following exercises, consider the construction of a
pen to enclose an area.

319. You have of fencing to construct a
rectangular pen for cattle. What are the dimensions of the
pen that maximize the area?

320. You have of fencing to make a pen for hogs.
If you have a river on one side of your property, what is the
dimension of the rectangular pen that maximizes the area?

321. You need to construct a fence around an area of
What are the dimensions of the rectangular pen to

minimize the amount of material needed?

322. Two poles are connected by a wire that is also
connected to the ground. The first pole is tall and
the second pole is tall. There is a distance of
between the two poles. Where should the wire be anchored
to the ground to minimize the amount of wire needed?

323. [T] You are moving into a new apartment and notice
there is a corner where the hallway narrows from

What is the length of the longest item that can
be carried horizontally around the corner?

324. A patient’s pulse measures
To determine an

accurate measurement of pulse, the doctor wants to know
what value minimizes the expression

What value
minimizes it?

Chapter 4 | Applications of Derivatives 451



325. In the previous problem, assume the patient was
nervous during the third measurement, so we only weight
that value half as much as the others. What is the value that
minimizes

326. You can run at a speed of mph and swim at a speed
of mph and are located on the shore, miles east of
an island that is mile north of the shoreline. How far
should you run west to minimize the time needed to reach
the island?

For the following problems, consider a lifeguard at a
circular pool with diameter He must reach someone
who is drowning on the exact opposite side of the pool, at
position The lifeguard swims with a speed and runs
around the pool at speed

327. Find a function that measures the total amount of
time it takes to reach the drowning person as a function of
the swim angle,

328. Find at what angle the lifeguard should swim to
reach the drowning person in the least amount of time.

329. A truck uses gas as where

represents the speed of the truck and represents the

gallons of fuel per mile. At what speed is fuel consumption
minimized?

For the following exercises, consider a limousine that gets

at speed the chauffeur

costs and gas is

330. Find the cost per mile at speed

331. Find the cheapest driving speed.

For the following exercises, consider a pizzeria that sell

pizzas for a revenue of and costs

where represents the number of
pizzas.

332. Find the profit function for the number of pizzas.
How many pizzas gives the largest profit per pizza?

333. Assume that and
How many pizzas sold maximizes the profit?

334. Assume that and

How many pizzas sold

maximizes the profit?

For the following exercises, consider a wire long cut
into two pieces. One piece forms a circle with radius and
the other forms a square of side

335. Choose to maximize the sum of their areas.

336. Choose to minimize the sum of their areas.

For the following exercises, consider two nonnegative
numbers and such that Maximize and

minimize the quantities.

337.

338.

339.

340.

For the following exercises, draw the given optimization
problem and solve.

341. Find the volume of the largest right circular cylinder
that fits in a sphere of radius

342. Find the volume of the largest right cone that fits in a
sphere of radius

343. Find the area of the largest rectangle that fits into the
triangle with sides and

344. Find the largest volume of a cylinder that fits into a
cone that has base radius and height

345. Find the dimensions of the closed cylinder volume
that has the least amount of surface area.

346. Find the dimensions of a right cone with surface area
that has the largest volume.
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For the following exercises, consider the points on the
given graphs. Use a calculator to graph the functions.

347. [T] Where is the line closest to the

origin?

348. [T] Where is the line closest to point

349. [T] Where is the parabola closest to point

350. [T] Where is the parabola closest to point

For the following exercises, set up, but do not evaluate,
each optimization problem.

351. A window is composed of a semicircle placed on
top of a rectangle. If you have of window-framing
materials for the outer frame, what is the maximum size of
the window you can create? Use to represent the radius
of the semicircle.

352. You have a garden row of watermelon plants
that produce an average of watermelons apiece. For
any additional watermelon plants planted, the output per
watermelon plant drops by one watermelon. How many
extra watermelon plants should you plant?

353. You are constructing a box for your cat to sleep in.
The plush material for the square bottom of the box costs

and the material for the sides costs You

need a box with volume Find the dimensions of the
box that minimize cost. Use to represent the length of the
side of the box.

354. You are building five identical pens adjacent to each
other with a total area of as shown in the
following figure. What dimensions should you use to
minimize the amount of fencing?

355. You are the manager of an apartment complex with
units. When you set rent at all

apartments are rented. As you increase rent by
one fewer apartment is rented. Maintenance

costs run for each occupied unit. What is the
rent that maximizes the total amount of profit?
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4.8 | L’Hôpital’s Rule

Learning Objectives
4.8.1 Recognize when to apply L’Hôpital’s rule.
4.8.2 Identify indeterminate forms produced by quotients, products, subtractions, and powers,
and apply L’Hôpital’s rule in each case.
4.8.3 Describe the relative growth rates of functions.

In this section, we examine a powerful tool for evaluating limits. This tool, known as L’Hôpital’s rule, uses derivatives to
calculate limits. With this rule, we will be able to evaluate many limits we have not yet been able to determine. Instead of
relying on numerical evidence to conjecture that a limit exists, we will be able to show definitively that a limit exists and to
determine its exact value.

Applying L’Hôpital’s Rule
L’Hôpital’s rule can be used to evaluate limits involving the quotient of two functions. Consider

If then

However, what happens if and We call this one of the indeterminate forms, of type

This is considered an indeterminate form because we cannot determine the exact behavior of as without

further analysis. We have seen examples of this earlier in the text. For example, consider

For the first of these examples, we can evaluate the limit by factoring the numerator and writing

For we were able to show, using a geometric argument, that

Here we use a different technique for evaluating limits such as these. Not only does this technique provide an easier way to
evaluate these limits, but also, and more important, it provides us with a way to evaluate many other limits that we could
not calculate previously.

The idea behind L’Hôpital’s rule can be explained using local linear approximations. Consider two differentiable functions
and such that and such that For near we can write

and

Therefore,
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Figure 4.71 If then the ratio is

approximately equal to the ratio of their linear approximations near

Since is differentiable at then is continuous at and therefore Similarly,

If we also assume that and are continuous at then and

Using these ideas, we conclude that

Note that the assumption that and are continuous at and can be loosened. We state L’Hôpital’s rule

formally for the indeterminate form Also note that the notation does not mean we are actually dividing zero by zero.

Rather, we are using the notation to represent a quotient of limits, each of which is zero.

Theorem 4.12: L’Hôpital’s Rule (0/0 Case)

Suppose and are differentiable functions over an open interval containing except possibly at If

and then

assuming the limit on the right exists or is or This result also holds if we are considering one-sided limits,
or if

Proof
We provide a proof of this theorem in the special case when and are all continuous over an open

interval containing In that case, since and and are continuous at it follows that

Therefore,
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Note that L’Hôpital’s rule states we can calculate the limit of a quotient by considering the limit of the quotient of the

derivatives It is important to realize that we are not calculating the derivative of the quotient

□

Example 4.38

Applying L’Hôpital’s Rule (0/0 Case)

Evaluate each of the following limits by applying L’Hôpital’s rule.

a.

b.

c.

d.

Solution
a. Since the numerator and the denominator we can apply L’Hôpital’s rule to

evaluate this limit. We have
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b. As the numerator and the denominator Therefore, we can apply
L’Hôpital’s rule. We obtain

c. As the numerator and the denominator Therefore, we can apply

L’Hôpital’s rule. We obtain

d. As both the numerator and denominator approach zero. Therefore, we can apply L’Hôpital’s
rule. We obtain

Since the numerator and denominator of this new quotient both approach zero as we apply
L’Hôpital’s rule again. In doing so, we see that

Therefore, we conclude that

Evaluate

We can also use L’Hôpital’s rule to evaluate limits of quotients in which and Limits of

this form are classified as indeterminate forms of type Again, note that we are not actually dividing by
Since is not a real number, that is impossible; rather, is used to represent a quotient of limits, each of which is

or

Theorem 4.13: L’Hôpital’s Rule Case)

Suppose and are differentiable functions over an open interval containing except possibly at Suppose

(or and (or Then,

assuming the limit on the right exists or is or This result also holds if the limit is infinite, if or
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or the limit is one-sided.

Example 4.39

Applying L’Hôpital’s Rule Case)

Evaluate each of the following limits by applying L’Hôpital’s rule.

a.

b.

Solution
a. Since and are first-degree polynomials with positive leading coefficients,

and Therefore, we apply L’Hôpital’s rule and obtain

Note that this limit can also be calculated without invoking L’Hôpital’s rule. Earlier in the chapter we
showed how to evaluate such a limit by dividing the numerator and denominator by the highest power of

in the denominator. In doing so, we saw that

L’Hôpital’s rule provides us with an alternative means of evaluating this type of limit.

b. Here, and Therefore, we can apply L’Hôpital’s rule and obtain

Now as Therefore, the first term in the denominator is approaching zero and
the second term is getting really large. In such a case, anything can happen with the product. Therefore,
we cannot make any conclusion yet. To evaluate the limit, we use the definition of to write

Now and so we apply L’Hôpital’s rule again. We find

We conclude that
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4.39

Evaluate

As mentioned, L’Hôpital’s rule is an extremely useful tool for evaluating limits. It is important to remember, however, that

to apply L’Hôpital’s rule to a quotient it is essential that the limit of be of the form or Consider

the following example.

Example 4.40

When L’Hôpital’s Rule Does Not Apply

Consider Show that the limit cannot be evaluated by applying L’Hôpital’s rule.

Solution
Because the limits of the numerator and denominator are not both zero and are not both infinite, we cannot apply
L’Hôpital’s rule. If we try to do so, we get

and

At which point we would conclude erroneously that

However, since and we actually have

We can conclude that

Explain why we cannot apply L’Hôpital’s rule to evaluate Evaluate by other

means.

Other Indeterminate Forms
L’Hôpital’s rule is very useful for evaluating limits involving the indeterminate forms and However, we can

also use L’Hôpital’s rule to help evaluate limits involving other indeterminate forms that arise when evaluating limits. The
expressions and are all considered indeterminate forms. These expressions are not
real numbers. Rather, they represent forms that arise when trying to evaluate certain limits. Next we realize why these are
indeterminate forms and then understand how to use L’Hôpital’s rule in these cases. The key idea is that we must rewrite
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the indeterminate forms in such a way that we arrive at the indeterminate form or

Indeterminate Form of Type

Suppose we want to evaluate where and (or as Since one term

in the product is approaching zero but the other term is becoming arbitrarily large (in magnitude), anything can happen to
the product. We use the notation to denote the form that arises in this situation. The expression is considered
indeterminate because we cannot determine without further analysis the exact behavior of the product as

For example, let be a positive integer and consider

As and However, the limit as of varies, depending on

If then If then If then Here we

consider another limit involving the indeterminate form and show how to rewrite the function as a quotient to use
L’Hôpital’s rule.

Example 4.41

Indeterminate Form of Type

Evaluate

Solution
First, rewrite the function as a quotient to apply L’Hôpital’s rule. If we write

we see that as and as Therefore, we can apply L’Hôpital’s rule and

obtain

We conclude that
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Figure 4.72 Finding the limit at of the function

Evaluate

Indeterminate Form of Type

Another type of indeterminate form is Consider the following example. Let be a positive integer and let

and As and We are interested in

Depending on whether grows faster, grows faster, or they grow at the same rate, as we see next, anything can

happen in this limit. Since and we write to denote the form of this limit. As with our

other indeterminate forms, has no meaning on its own and we must do more analysis to determine the value of the
limit. For example, suppose the exponent in the function is then

On the other hand, if then

However, if then

Therefore, the limit cannot be determined by considering only Next we see how to rewrite an expression involving
the indeterminate form as a fraction to apply L’Hôpital’s rule.

Example 4.42

Indeterminate Form of Type
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Evaluate

Solution
By combining the fractions, we can write the function as a quotient. Since the least common denominator is

we have

As the numerator and the denominator Therefore, we can apply
L’Hôpital’s rule. Taking the derivatives of the numerator and the denominator, we have

As and Since the denominator is positive as

approaches zero from the right, we conclude that

Therefore,

Evaluate

Another type of indeterminate form that arises when evaluating limits involves exponents. The expressions and

are all indeterminate forms. On their own, these expressions are meaningless because we cannot actually evaluate these
expressions as we would evaluate an expression involving real numbers. Rather, these expressions represent forms that arise
when finding limits. Now we examine how L’Hôpital’s rule can be used to evaluate limits involving these indeterminate
forms.

Since L’Hôpital’s rule applies to quotients, we use the natural logarithm function and its properties to reduce a problem
evaluating a limit involving exponents to a related problem involving a limit of a quotient. For example, suppose we want

to evaluate and we arrive at the indeterminate form (The indeterminate forms and can be

handled similarly.) We proceed as follows. Let

Then,

Therefore,

Since we know that Therefore, is of the indeterminate form
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4.42

and we can use the techniques discussed earlier to rewrite the expression in a form so that we can

apply L’Hôpital’s rule. Suppose where may be or Then

Since the natural logarithm function is continuous, we conclude that

which gives us

Example 4.43

Indeterminate Form of Type

Evaluate

Solution

Let Then,

We need to evaluate Applying L’Hôpital’s rule, we obtain

Therefore, Since the natural logarithm function is continuous, we conclude that

which leads to

Hence,

Evaluate

Example 4.44

Indeterminate Form of Type
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4.43

Evaluate

Solution
Let

Therefore,

We now evaluate Since and we have the indeterminate

form To apply L’Hôpital’s rule, we need to rewrite as a fraction. We could write

or

Let’s consider the first option. In this case, applying L’Hôpital’s rule, we would obtain

Unfortunately, we not only have another expression involving the indeterminate form but the new limit
is even more complicated to evaluate than the one with which we started. Instead, we try the second option. By
writing

and applying L’Hôpital’s rule, we obtain

Using the fact that and we can rewrite the expression on the right-hand side as

We conclude that Therefore, and we have

Hence,

Evaluate
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Growth Rates of Functions
Suppose the functions and both approach infinity as Although the values of both functions become

arbitrarily large as the values of become sufficiently large, sometimes one function is growing more quickly than the

other. For example, and both approach infinity as However, as shown in the following

table, the values of are growing much faster than the values of

Table 4.7 Comparing the Growth Rates of and

In fact,

As a result, we say is growing more rapidly than as On the other hand, for and

although the values of are always greater than the values of for each value of

is roughly three times the corresponding value of as as shown in the following table. In fact,

Table 4.8 Comparing the Growth Rates of and

In this case, we say that and are growing at the same rate as

More generally, suppose and are two functions that approach infinity as We say grows more rapidly than

as if

On the other hand, if there exists a constant such that

we say and grow at the same rate as
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Next we see how to use L’Hôpital’s rule to compare the growth rates of power, exponential, and logarithmic functions.

Example 4.45

Comparing the Growth Rates of and

For each of the following pairs of functions, use L’Hôpital’s rule to evaluate

a.

b.

Solution

a. Since and we can use L’Hôpital’s rule to evaluate We

obtain

Since and we can apply L’Hôpital’s rule again. Since

we conclude that

Therefore, grows more rapidly than as (See Figure 4.73 and Table 4.9).

Figure 4.73 An exponential function grows at a faster rate
than a power function.
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Table 4.9
Growth rates of a power function and an exponential function.

b. Since and we can use L’Hôpital’s rule to evaluate We

obtain

Thus, grows more rapidly than as (see Figure 4.74 and Table 4.10).

Figure 4.74 A power function grows at a faster rate than a
logarithmic function.

Table 4.10
Growth rates of a power function and a logarithmic function
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4.44 Compare the growth rates of and

Using the same ideas as in Example 4.45a. it is not difficult to show that grows more rapidly than for any

In Figure 4.75 and Table 4.11, we compare with and as

Figure 4.75 The exponential function grows faster than for any (a) A comparison of with

(b) A comparison of with

Table 4.11 An exponential function grows at a faster rate than
any power function

Similarly, it is not difficult to show that grows more rapidly than for any In Figure 4.76 and Table 4.12,

we compare with and

Figure 4.76 The function grows more slowly than

for any as
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Table 4.12 A logarithmic function grows at a slower rate
than any root function

Chapter 4 | Applications of Derivatives 469



4.8 EXERCISES
For the following exercises, evaluate the limit.

356. Evaluate the limit

357. Evaluate the limit

358. Evaluate the limit

359. Evaluate the limit .

360. Evaluate the limit .

361. Evaluate the limit .

For the following exercises, determine whether you can
apply L’Hôpital’s rule directly. Explain why or why not.
Then, indicate if there is some way you can alter the limit
so you can apply L’Hôpital’s rule.

362.

363.

364.

365.

366.

For the following exercises, evaluate the limits with either
L’Hôpital’s rule or previously learned methods.

367.

368.

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.
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391.

392.

393.

394.

395.

For the following exercises, use a calculator to graph the
function and estimate the value of the limit, then use
L’Hôpital’s rule to find the limit directly.

396. [T]

397. [T]

398. [T]

399. [T]

400. [T]

401. [T]

402. [T]

403. [T]

404. [T]

405. [T]
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4.9 | Newton’s Method

Learning Objectives
4.9.1 Describe the steps of Newton’s method.
4.9.2 Explain what an iterative process means.
4.9.3 Recognize when Newton’s method does not work.
4.9.4 Apply iterative processes to various situations.

In many areas of pure and applied mathematics, we are interested in finding solutions to an equation of the form

For most functions, however, it is difficult—if not impossible—to calculate their zeroes explicitly. In this section, we take
a look at a technique that provides a very efficient way of approximating the zeroes of functions. This technique makes use
of tangent line approximations and is behind the method used often by calculators and computers to find zeroes.

Describing Newton’s Method
Consider the task of finding the solutions of If is the first-degree polynomial then the

solution of is given by the formula If is the second-degree polynomial

the solutions of can be found by using the quadratic formula. However, for polynomials of degree or more,

finding roots of becomes more complicated. Although formulas exist for third- and fourth-degree polynomials, they are

quite complicated. Also, if is a polynomial of degree or greater, it is known that no such formulas exist. For example,

consider the function

No formula exists that allows us to find the solutions of Similar difficulties exist for nonpolynomial functions.

For example, consider the task of finding solutions of No simple formula exists for the solutions of this
equation. In cases such as these, we can use Newton’s method to approximate the roots.

Newton’s method makes use of the following idea to approximate the solutions of By sketching a graph of

we can estimate a root of Let’s call this estimate We then draw the tangent line to at If

this tangent line intersects the -axis at some point Now let be the next approximation to the

actual root. Typically, is closer than to an actual root. Next we draw the tangent line to at If

this tangent line also intersects the -axis, producing another approximation, We continue in this way, deriving a list

of approximations: Typically, the numbers quickly approach an actual root as shown

in the following figure.

472 Chapter 4 | Applications of Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Figure 4.77 The approximations approach the actual root The

approximations are derived by looking at tangent lines to the graph of

Now let’s look at how to calculate the approximations If is our first approximation, the approximation

is defined by letting be the -intercept of the tangent line to at The equation of this tangent line is given

by

Therefore, must satisfy

Solving this equation for we conclude that

Similarly, the point is the -intercept of the tangent line to at Therefore, satisfies the equation

In general, for satisfies

(4.8)

Next we see how to make use of this technique to approximate the root of the polynomial
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Example 4.46

Finding a Root of a Polynomial

Use Newton’s method to approximate a root of in the interval Let and find

and

Solution
From Figure 4.78, we see that has one root over the interval Therefore seems like

a reasonable first approximation. To find the next approximation, we use Equation 4.8. Since
the derivative is Using Equation 4.8 with (and a calculator

that displays digits), we obtain

To find the next approximation, we use Equation 4.8 with and the value of stored on the

calculator. We find that

Continuing in this way, we obtain the following results:

We note that we obtained the same value for and Therefore, any subsequent application of Newton’s

method will most likely give the same value for

Figure 4.78 The function has one root

over the interval
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4.45 Letting let’s use Newton’s method to approximate the root of over the

interval by calculating and

Newton’s method can also be used to approximate square roots. Here we show how to approximate This method can
be modified to approximate the square root of any positive number.

Example 4.47

Finding a Square Root

Use Newton’s method to approximate (Figure 4.79). Let let and calculate

(We note that since has a zero at the initial value is a

reasonable choice to approximate

Solution

For From Equation 4.8, we know that

Therefore,

Continuing in this way, we find that

Since we obtained the same value for and it is unlikely that the value will change on any subsequent

application of Newton’s method. We conclude that
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4.46

Figure 4.79 We can use Newton’s method to find

Use Newton’s method to approximate by letting and Find and

When using Newton’s method, each approximation after the initial guess is defined in terms of the previous approximation

by using the same formula. In particular, by defining the function we can rewrite Equation 4.8 as

This type of process, where each is defined in terms of by repeating the same function, is an

example of an iterative process. Shortly, we examine other iterative processes. First, let’s look at the reasons why Newton’s
method could fail to find a root.

Failures of Newton’s Method
Typically, Newton’s method is used to find roots fairly quickly. However, things can go wrong. Some reasons why Newton’s
method might fail include the following:

1. At one of the approximations the derivative is zero at but As a result, the tangent line of

at does not intersect the -axis. Therefore, we cannot continue the iterative process.

2. The approximations may approach a different root. If the function has more than one root, it is

possible that our approximations do not approach the one for which we are looking, but approach a different root
(see Figure 4.80). This event most often occurs when we do not choose the approximation close enough to the

desired root.

3. The approximations may fail to approach a root entirely. In Example 4.48, we provide an example of a function
and an initial guess such that the successive approximations never approach a root because the successive

approximations continue to alternate back and forth between two values.
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Figure 4.80 If the initial guess is too far from the root sought, it may lead

to approximations that approach a different root.

Example 4.48

When Newton’s Method Fails

Consider the function Let Show that the sequence fails to approach a

root of

Solution

For the derivative is Therefore,

In the next step,

Consequently, the numbers continue to bounce back and forth between and and never get

closer to the root of which is over the interval (see Figure 4.81). Fortunately, if we choose an

initial approximation closer to the actual root, we can avoid this situation.
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4.47

Figure 4.81 The approximations continue to alternate
between and never approach the root of

For let and find and

From Example 4.48, we see that Newton’s method does not always work. However, when it does work, the sequence of
approximations approaches the root very quickly. Discussions of how quickly the sequence of approximations approach a
root found using Newton’s method are included in texts on numerical analysis.

Other Iterative Processes
As mentioned earlier, Newton’s method is a type of iterative process. We now look at an example of a different type of
iterative process.

Consider a function and an initial number Define the subsequent numbers by the formula This

process is an iterative process that creates a list of numbers This list of numbers may approach a

finite number as gets larger, or it may not. In Example 4.49, we see an example of a function and an initial
guess such that the resulting list of numbers approaches a finite value.

Example 4.49

Finding a Limit for an Iterative Process

Let and let For all let Find the values

Make a conjecture about what happens to this list of numbers as If the list of

numbers approaches a finite number then satisfies and is called

a fixed point of

Solution
If then
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From this list, we conjecture that the values approach

Figure 4.82 provides a graphical argument that the values approach as Starting at the point
we draw a vertical line to the point The next number in our list is We use

to calculate Therefore, we draw a horizontal line connecting to the point on the line

and then draw a vertical line connecting to the point The output becomes

Continuing in this way, we could create an infinite number of line segments. These line segments are trapped

between the lines and The line segments get closer to the intersection point of these two

lines, which occurs when Solving the equation we conclude they intersect at

Therefore, our graphical evidence agrees with our numerical evidence that the list of numbers

approaches as

Figure 4.82 This iterative process approaches the value
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4.48 Consider the function Let and let for Find

Make a conjecture about what happens to the list of numbers as
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Iterative Processes and Chaos

Iterative processes can yield some very interesting behavior. In this section, we have seen several examples of iterative
processes that converge to a fixed point. We also saw in Example 4.48 that the iterative process bounced back and
forth between two values. We call this kind of behavior a -cycle. Iterative processes can converge to cycles with
various periodicities, such as (where the iterative process repeats a sequence of four values),

8-cycles, and so on.

Some iterative processes yield what mathematicians call chaos. In this case, the iterative process jumps from value to
value in a seemingly random fashion and never converges or settles into a cycle. Although a complete exploration of
chaos is beyond the scope of this text, in this project we look at one of the key properties of a chaotic iterative process:
sensitive dependence on initial conditions. This property refers to the concept that small changes in initial conditions
can generate drastically different behavior in the iterative process.

Probably the best-known example of chaos is the Mandelbrot set (see Figure 4.83), named after Benoit Mandelbrot
(1924–2010), who investigated its properties and helped popularize the field of chaos theory. The Mandelbrot set is
usually generated by computer and shows fascinating details on enlargement, including self-replication of the set.
Several colorized versions of the set have been shown in museums and can be found online and in popular books on
the subject.

Figure 4.83 The Mandelbrot set is a well-known example of a set of points generated by the
iterative chaotic behavior of a relatively simple function.

In this project we use the logistic map

as the function in our iterative process. The logistic map is a deceptively simple function; but, depending on the value
of the resulting iterative process displays some very interesting behavior. It can lead to fixed points, cycles, and
even chaos.
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To visualize the long-term behavior of the iterative process associated with the logistic map, we will use a tool called a
cobweb diagram. As we did with the iterative process we examined earlier in this section, we first draw a vertical line
from the point to the point We then draw a horizontal line from that point to the point

then draw a vertical line to and continue the process until the long-term behavior

of the system becomes apparent. Figure 4.84 shows the long-term behavior of the logistic map when and
(The first iterations are not plotted.) The long-term behavior of this iterative process is an -cycle.

Figure 4.84 A cobweb diagram for is

presented here. The sequence of values results in an -cycle.

1. Let and choose Either by hand or by using a computer, calculate the first values in the

sequence. Does the sequence appear to converge? If so, to what value? Does it result in a cycle? If so, what
kind of cycle (for example,

2. What happens when

3. For and calculate the first sequence values. Generate a cobweb diagram for each
iterative process. (Several free applets are available online that generate cobweb diagrams for the logistic map.)
What is the long-term behavior in each of these cases?

4. Now let Calculate the first sequence values and generate a cobweb diagram. What is the long-
term behavior in this case?

5. Repeat the process for but let How does this behavior compare with the behavior for
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4.9 EXERCISES
For the following exercises, write Newton’s formula as

for solving

406.

407.

408.

409.

410.

For the following exercises, solve using the

iteration which differs slightly

from Newton’s method. Find a that works and a that
fails to converge, with the exception of

411. with

412. with

413. What is the value of for Newton’s method?

For the following exercises, start at

a. and

b.

Compute and using the specified iterative method.

414.

415.

416.

417.

418.

419.

420.

421.

For the following exercises, solve to four decimal places

using Newton’s method and a computer or calculator.
Choose any initial guess that is not the exact root.

422.

423.

424.

425.

426.

427. choose

428.

429.

430.

431.

For the following exercises, use Newton’s method to find
the fixed points of the function where round to

three decimals.

432.

433. on

434.

435.

Newton’s method can be used to find maxima and minima
of functions in addition to the roots. In this case apply
Newton’s method to the derivative function to find

its roots, instead of the original function. For the following
exercises, consider the formulation of the method.

436. To find candidates for maxima and minima, we need
to find the critical points Show that to solve for

the critical points of a function Newton’s method is

given by

437. What additional restrictions are necessary on the
function
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For the following exercises, use Newton’s method to find
the location of the local minima and/or maxima of the
following functions; round to three decimals.

438. Minimum of

439. Minimum of

440. Minimum of

441. Maximum of

442. Maximum of

443. Maximum of

444. Minimum of closest non-zero

minimum to

445. Minimum of

For the following exercises, use the specified method to
solve the equation. If it does not work, explain why it does
not work.

446. Newton’s method,

447. Newton’s method,

448. Newton’s method, starting at

449. Solving starting at

For the following exercises, use the secant method, an
alternative iterative method to Newton’s method. The
formula is given by

450. Find a root to accurate to three
decimal places.

451. Find a root to accurate to four
decimal places.

452. Find a root to accurate to four decimal
places.

453. Find a root to accurate to four

decimal places.

454. Why would you use the secant method over
Newton’s method? What are the necessary restrictions on

For the following exercises, use both Newton’s method
and the secant method to calculate a root for the following
equations. Use a calculator or computer to calculate how
many iterations of each are needed to reach within three
decimal places of the exact answer. For the secant method,
use the first guess from Newton’s method.

455.

456.

457.

458.

459.

In the following exercises, consider Kepler’s equation
regarding planetary orbits, where
is the mean anomaly, is eccentric anomaly, and
measures eccentricity.

460. Use Newton’s method to solve for the eccentric
anomaly when the mean anomaly and the

eccentricity of the orbit round to three
decimals.

461. Use Newton’s method to solve for the eccentric
anomaly when the mean anomaly and the

eccentricity of the orbit round to three decimals.

The following two exercises consider a bank investment.
The initial investment is After years, the
investment has tripled to

462. Use Newton’s method to determine the interest rate
if the interest was compounded annually.

463. Use Newton’s method to determine the interest rate
if the interest was compounded continuously.

464. The cost for printing a book can be given by the

equation Use Newton’s

method to find the break-even point if the printer sells each
book for
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4.10 | Antiderivatives

Learning Objectives
4.10.1 Find the general antiderivative of a given function.
4.10.2 Explain the terms and notation used for an indefinite integral.
4.10.3 State the power rule for integrals.
4.10.4 Use antidifferentiation to solve simple initial-value problems.

At this point, we have seen how to calculate derivatives of many functions and have been introduced to a variety of their
applications. We now ask a question that turns this process around: Given a function how do we find a function with

the derivative and why would we be interested in such a function?

We answer the first part of this question by defining antiderivatives. The antiderivative of a function is a function with a

derivative Why are we interested in antiderivatives? The need for antiderivatives arises in many situations, and we look

at various examples throughout the remainder of the text. Here we examine one specific example that involves rectilinear
motion. In our examination in Derivatives of rectilinear motion, we showed that given a position function of an
object, then its velocity function is the derivative of —that is, Furthermore, the acceleration
is the derivative of the velocity —that is, Now suppose we are given an acceleration function

but not the velocity function or the position function Since determining the velocity function
requires us to find an antiderivative of the acceleration function. Then, since determining the position
function requires us to find an antiderivative of the velocity function. Rectilinear motion is just one case in which the
need for antiderivatives arises. We will see many more examples throughout the remainder of the text. For now, let’s look
at the terminology and notation for antiderivatives, and determine the antiderivatives for several types of functions. We
examine various techniques for finding antiderivatives of more complicated functions later in the text (Introduction to
Techniques of Integration (http://cnx.org/content/m53654/latest/) ).

The Reverse of Differentiation
At this point, we know how to find derivatives of various functions. We now ask the opposite question. Given a function

how can we find a function with derivative If we can find a function derivative we call an antiderivative

of

Definition

A function is an antiderivative of the function if

for all in the domain of

Consider the function Knowing the power rule of differentiation, we conclude that is an

antiderivative of since Are there any other antiderivatives of Yes; since the derivative of any constant

is zero, is also an antiderivative of Therefore, and are also antiderivatives. Are there any

others that are not of the form for some constant The answer is no. From Corollary of the Mean Value
Theorem, we know that if and are differentiable functions such that then for
some constant This fact leads to the following important theorem.

Chapter 4 | Applications of Derivatives 485



Theorem 4.14: General Form of an Antiderivative

Let be an antiderivative of over an interval Then,

i. for each constant the function is also an antiderivative of over

ii. if is an antiderivative of over there is a constant for which over

In other words, the most general form of the antiderivative of over is

We use this fact and our knowledge of derivatives to find all the antiderivatives for several functions.

Example 4.50

Finding Antiderivatives

For each of the following functions, find all antiderivatives.

a.

b.

c.

d.

Solution
a. Because

then is an antiderivative of Therefore, every antiderivative of is of the form

for some constant and every function of the form is an antiderivative of

b. Let For and

For and

Therefore,

Thus, is an antiderivative of Therefore, every antiderivative of is of the form

for some constant and every function of the form is an antiderivative of

c. We have
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4.49

so is an antiderivative of Therefore, every antiderivative of is of the form
for some constant and every function of the form is an antiderivative of

d. Since

then is an antiderivative of Therefore, every antiderivative of is of the form

for some constant and every function of the form is an antiderivative of

Find all antiderivatives of

Indefinite Integrals
We now look at the formal notation used to represent antiderivatives and examine some of their properties. These properties

allow us to find antiderivatives of more complicated functions. Given a function we use the notation or

to denote the derivative of Here we introduce notation for antiderivatives. If is an antiderivative of we say that

is the most general antiderivative of and write

The symbol is called an integral sign, and is called the indefinite integral of

Definition

Given a function the indefinite integral of denoted

is the most general antiderivative of If is an antiderivative of then

The expression is called the integrand and the variable is the variable of integration.

Given the terminology introduced in this definition, the act of finding the antiderivatives of a function is usually referred

to as integrating

For a function and an antiderivative the functions where is any real number, is often referred to as

the family of antiderivatives of For example, since is an antiderivative of and any antiderivative of is of the

form we write
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The collection of all functions of the form where is any real number, is known as the family of antiderivatives
of Figure 4.85 shows a graph of this family of antiderivatives.

Figure 4.85 The family of antiderivatives of consists of all functions of the

form where is any real number.

For some functions, evaluating indefinite integrals follows directly from properties of derivatives. For example, for

which comes directly from

This fact is known as the power rule for integrals.

Theorem 4.15: Power Rule for Integrals

For

Evaluating indefinite integrals for some other functions is also a straightforward calculation. The following table lists the
indefinite integrals for several common functions. A more complete list appears in Appendix B.
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Differentiation Formula Indefinite Integral

for

Table 4.13 Integration Formulas

From the definition of indefinite integral of we know
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if and only if is an antiderivative of Therefore, when claiming that

it is important to check whether this statement is correct by verifying that

Example 4.51

Verifying an Indefinite Integral

Each of the following statements is of the form Verify that each statement is correct by

showing that

a.

b.

Solution
a. Since

the statement

is correct.

Note that we are verifying an indefinite integral for a sum. Furthermore, and are antiderivatives

of and respectively, and the sum of the antiderivatives is an antiderivative of the sum. We discuss
this fact again later in this section.

b. Using the product rule, we see that

Therefore, the statement

is correct.
Note that we are verifying an indefinite integral for a product. The antiderivative is not

a product of the antiderivatives. Furthermore, the product of antiderivatives, is not an
antiderivative of since

In general, the product of antiderivatives is not an antiderivative of a product.
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4.50 Verify that

In Table 4.13, we listed the indefinite integrals for many elementary functions. Let’s now turn our attention to evaluating
indefinite integrals for more complicated functions. For example, consider finding an antiderivative of a sum

In Example 4.51a. we showed that an antiderivative of the sum is given by the sum —that is, an

antiderivative of a sum is given by a sum of antiderivatives. This result was not specific to this example. In general, if
and are antiderivatives of any functions and respectively, then

Therefore, is an antiderivative of and we have

Similarly,

In addition, consider the task of finding an antiderivative of where is any real number. Since

for any real number we conclude that

These properties are summarized next.

Theorem 4.16: Properties of Indefinite Integrals

Let and be antiderivatives of and respectively, and let be any real number.

Sums and Differences

Constant Multiples

From this theorem, we can evaluate any integral involving a sum, difference, or constant multiple of functions with
antiderivatives that are known. Evaluating integrals involving products, quotients, or compositions is more complicated (see
Example 4.51b. for an example involving an antiderivative of a product.) We look at and address integrals involving these
more complicated functions in Introduction to Integration. In the next example, we examine how to use this theorem to
calculate the indefinite integrals of several functions.

Example 4.52

Evaluating Indefinite Integrals
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Evaluate each of the following indefinite integrals:

a.

b.

c.

d.

Solution
a. Using Properties of Indefinite Integrals, we can integrate each of the four terms in the integrand

separately. We obtain

From the second part of Properties of Indefinite Integrals, each coefficient can be written in front of
the integral sign, which gives

Using the power rule for integrals, we conclude that

b. Rewrite the integrand as

Then, to evaluate the integral, integrate each of these terms separately. Using the power rule, we have

c. Using Properties of Indefinite Integrals, write the integral as

Then, use the fact that is an antiderivative of to conclude that

d. Rewrite the integrand as
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4.51

Therefore,

Evaluate

Initial-Value Problems
We look at techniques for integrating a large variety of functions involving products, quotients, and compositions later in
the text. Here we turn to one common use for antiderivatives that arises often in many applications: solving differential
equations.

A differential equation is an equation that relates an unknown function and one or more of its derivatives. The equation

(4.9)

is a simple example of a differential equation. Solving this equation means finding a function with a derivative

Therefore, the solutions of Equation 4.9 are the antiderivatives of If is one antiderivative of every function of

the form is a solution of that differential equation. For example, the solutions of

are given by

Sometimes we are interested in determining whether a particular solution curve passes through a certain point

—that is, The problem of finding a function that satisfies a differential equation

(4.10)

with the additional condition

(4.11)

is an example of an initial-value problem. The condition is known as an initial condition. For example,

looking for a function that satisfies the differential equation

and the initial condition

is an example of an initial-value problem. Since the solutions of the differential equation are to find a

function that also satisfies the initial condition, we need to find such that From this equation,

we see that and we conclude that is the solution of this initial-value problem as shown in the

following graph.
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Figure 4.86 Some of the solution curves of the differential equation

are displayed. The function satisfies the differential equation and the

initial condition

Example 4.53

Solving an Initial-Value Problem

Solve the initial-value problem

Solution

First we need to solve the differential equation. If then

Next we need to look for a solution that satisfies the initial condition. The initial condition means

we need a constant such that Therefore,

The solution of the initial-value problem is

Solve the initial value problem

Initial-value problems arise in many applications. Next we consider a problem in which a driver applies the brakes in a car.
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We are interested in how long it takes for the car to stop. Recall that the velocity function is the derivative of a position
function and the acceleration is the derivative of the velocity function. In earlier examples in the text, we could
calculate the velocity from the position and then compute the acceleration from the velocity. In the next example we work
the other way around. Given an acceleration function, we calculate the velocity function. We then use the velocity function
to determine the position function.

Example 4.54

Decelerating Car

A car is traveling at the rate of ft/sec mph) when the brakes are applied. The car begins decelerating at a
constant rate of ft/sec2.

a. How many seconds elapse before the car stops?

b. How far does the car travel during that time?

Solution
a. First we introduce variables for this problem. Let be the time (in seconds) after the brakes are first

applied. Let be the acceleration of the car (in feet per seconds squared) at time Let be the
velocity of the car (in feet per second) at time Let be the car’s position (in feet) beyond the point
where the brakes are applied at time
The car is traveling at a rate of Therefore, the initial velocity is ft/sec. Since the car
is decelerating, the acceleration is

The acceleration is the derivative of the velocity,

Therefore, we have an initial-value problem to solve:

Integrating, we find that

Since Thus, the velocity function is

To find how long it takes for the car to stop, we need to find the time such that the velocity is zero.

Solving we obtain sec.

b. To find how far the car travels during this time, we need to find the position of the car after sec. We

know the velocity is the derivative of the position Consider the initial position to be
Therefore, we need to solve the initial-value problem
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4.53

Integrating, we have

Since the constant is Therefore, the position function is

After sec, the position is ft.

Suppose the car is traveling at the rate of ft/sec. How long does it take for the car to stop? How far
will the car travel?
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4.10 EXERCISES
For the following exercises, show that are
antiderivatives of

465.

466.

467.

468.

469.

For the following exercises, find the antiderivative of the
function.

470.

471.

472.

473.

For the following exercises, find the antiderivative of
each function

474.

475.

476.

477.

478.

479.

480.

481.

482.

483.

484.

485.

486.

487.

488.

489.

For the following exercises, evaluate the integral.

490.

491.

492.

493.

494.

495.

496.

497.

498.

For the following exercises, solve the initial value problem.

499.

500.

501.

502.
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503.

For the following exercises, find two possible functions

given the second- or third-order derivatives.

504.

505.

506.

507.

508.

509. A car is being driven at a rate of mph when the
brakes are applied. The car decelerates at a constant rate of

ft/sec2. How long before the car stops?

510. In the preceding problem, calculate how far the car
travels in the time it takes to stop.

511. You are merging onto the freeway, accelerating at a
constant rate of ft/sec2. How long does it take you to
reach merging speed at mph?

512. Based on the previous problem, how far does the car
travel to reach merging speed?

513. A car company wants to ensure its newest model can
stop in sec when traveling at mph. If we assume
constant deceleration, find the value of deceleration that
accomplishes this.

514. A car company wants to ensure its newest model can
stop in less than ft when traveling at mph. If we
assume constant deceleration, find the value of deceleration
that accomplishes this.

For the following exercises, find the antiderivative of the
function, assuming

515. [T]

516. [T]

517. [T]

518. [T]

519. [T]

520. [T]

For the following exercises, determine whether the
statement is true or false. Either prove it is true or find a
counterexample if it is false.

521. If is the antiderivative of then is

the antiderivative of

522. If is the antiderivative of then is

the antiderivative of

523. If is the antiderivative of then

is the antiderivative of

524. If is the antiderivative of then

is the antiderivative of
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absolute extremum

absolute maximum

absolute minimum

antiderivative

concave down

concave up

concavity

concavity test

critical point

differential

differential form

end behavior

extreme value theorem

Fermat’s theorem

first derivative test

horizontal asymptote

indefinite integral

indeterminate forms

infinite limit at infinity

inflection point

CHAPTER 4 REVIEW

KEY TERMS
if has an absolute maximum or absolute minimum at we say has an absolute extremum

at

if for all in the domain of we say has an absolute maximum at

if for all in the domain of we say has an absolute minimum at

a function such that for all in the domain of is an antiderivative of

if is differentiable over an interval and is decreasing over then is concave down over

if is differentiable over an interval and is increasing over then is concave up over

the upward or downward curve of the graph of a function

suppose is twice differentiable over an interval if over then is concave up over

if over then is concave down over

if or is undefined, we say that is a critical point of

the differential is an independent variable that can be assigned any nonzero real number; the differential
is defined to be

given a differentiable function the equation is the differential form of the

derivative of with respect to

the behavior of a function as and

if is a continuous function over a finite, closed interval, then has an absolute maximum

and an absolute minimum

if has a local extremum at then is a critical point of

let be a continuous function over an interval containing a critical point such that is

differentiable over except possibly at if changes sign from positive to negative as increases through

then has a local maximum at if changes sign from negative to positive as increases through then

has a local minimum at if does not change sign as increases through then does not have a local

extremum at

if or then is a horizontal asymptote of

the most general antiderivative of is the indefinite integral of we use the notation

to denote the indefinite integral of

when evaluating a limit, the forms and are

considered indeterminate because further analysis is required to determine whether the limit exists and, if so, what its
value is

a function that becomes arbitrarily large as x becomes large

if is continuous at and changes concavity at the point is an inflection point of
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initial value problem

iterative process

limit at infinity

linear approximation

local extremum

local maximum

local minimum

L’Hôpital’s rule

mean value theorem

Newton’s method

oblique asymptote

optimization problems

percentage error

propagated error

related rates

relative error

rolle’s theorem

second derivative test

tangent line approximation (linearization)

a problem that requires finding a function that satisfies the differential equation

together with the initial condition

process in which a list of numbers is generated by starting with a number and

defining for

the limiting value, if it exists, of a function as or

the linear function is the linear approximation of at

if has a local maximum or local minimum at we say has a local extremum at

if there exists an interval such that for all we say has a local maximum at

if there exists an interval such that for all we say has a local minimum at

if and are differentiable functions over an interval except possibly at and

or and are infinite, then assuming the

limit on the right exists or is or

if is continuous over and differentiable over then there exists such

that

method for approximating roots of using an initial guess each subsequent

approximation is defined by the equation

the line if approaches it as or

problems that are solved by finding the maximum or minimum value of a function

the relative error expressed as a percentage

the error that results in a calculated quantity resulting from a measurement error dx

are rates of change associated with two or more related quantities that are changing over time

given an absolute error for a particular quantity, is the relative error.

if is continuous over and differentiable over and if then there exists

such that

suppose and is continuous over an interval containing if then

has a local minimum at if then has a local maximum at if then the test is

inconclusive

since the linear approximation of at is defined using the

equation of the tangent line, the linear approximation of at is also known as the tangent line approximation

to at

KEY EQUATIONS
• Linear approximation
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• A differential

KEY CONCEPTS
4.1 Related Rates

• To solve a related rates problem, first draw a picture that illustrates the relationship between the two or more related
quantities that are changing with respect to time.

• In terms of the quantities, state the information given and the rate to be found.

• Find an equation relating the quantities.

• Use differentiation, applying the chain rule as necessary, to find an equation that relates the rates.

• Be sure not to substitute a variable quantity for one of the variables until after finding an equation relating the rates.

4.2 Linear Approximations and Differentials

• A differentiable function can be approximated at by the linear function

• For a function if changes from to then

is an approximation for the change in The actual change in is

• A measurement error can lead to an error in a calculated quantity The error in the calculated quantity is

known as the propagated error. The propagated error can be estimated by

• To estimate the relative error of a particular quantity we estimate

4.3 Maxima and Minima

• A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or
have no absolute maximum or absolute minimum.

• If a function has a local extremum, the point at which it occurs must be a critical point. However, a function need
not have a local extremum at a critical point.

• A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each
extremum occurs at a critical point or an endpoint.

4.4 The Mean Value Theorem

• If is continuous over and differentiable over and then there exists a point

such that This is Rolle’s theorem.

• If is continuous over and differentiable over then there exists a point such that
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This is the Mean Value Theorem.

• If over an interval then is constant over

• If two differentiable functions and satisfy over then for some constant

• If over an interval then is increasing over If over then is decreasing over

4.5 Derivatives and the Shape of a Graph

• If is a critical point of and for and for then has a local maximum at

• If is a critical point of and for and for then has a local minimum at

• If over an interval then is concave up over

• If over an interval then is concave down over

• If and then has a local minimum at

• If and then has a local maximum at

• If and then evaluate at a test point to the left of and a test point to the right

of to determine whether has a local extremum at

4.6 Limits at Infinity and Asymptotes

• The limit of is as (or as if the values become arbitrarily close to as

becomes sufficiently large.

• The limit of is as if becomes arbitrarily large as becomes sufficiently large. The limit

of is as if and becomes arbitrarily large as becomes sufficiently large. We

can define the limit of as approaches similarly.

• For a polynomial function where the end behavior is

determined by the leading term If approaches or at each end.

• For a rational function the end behavior is determined by the relationship between the degree of

and the degree of If the degree of is less than the degree of the line is a horizontal asymptote for

If the degree of is equal to the degree of then the line is a horizontal asymptote, where and

are the leading coefficients of and respectively. If the degree of is greater than the degree of then

approaches or at each end.

4.7 Applied Optimization Problems

• To solve an optimization problem, begin by drawing a picture and introducing variables.

• Find an equation relating the variables.

• Find a function of one variable to describe the quantity that is to be minimized or maximized.
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• Look for critical points to locate local extrema.

4.8 L’Hôpital’s Rule

• L’Hôpital’s rule can be used to evaluate the limit of a quotient when the indeterminate form or arises.

• L’Hôpital’s rule can also be applied to other indeterminate forms if they can be rewritten in terms of a limit involving
a quotient that has the indeterminate form or

• The exponential function grows faster than any power function

• The logarithmic function grows more slowly than any power function

4.9 Newton’s Method

• Newton’s method approximates roots of by starting with an initial approximation then uses tangent

lines to the graph of to create a sequence of approximations

• Typically, Newton’s method is an efficient method for finding a particular root. In certain cases, Newton’s method
fails to work because the list of numbers does not approach a finite value or it approaches a value

other than the root sought.

• Any process in which a list of numbers is generated by defining an initial number and defining

the subsequent numbers by the equation for some function is an iterative process. Newton’s

method is an example of an iterative process, where the function for a given function

4.10 Antiderivatives

• If is an antiderivative of then every antiderivative of is of the form for some constant

• Solving the initial-value problem

requires us first to find the set of antiderivatives of and then to look for the particular antiderivative that also

satisfies the initial condition.

CHAPTER 4 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample. Assume that is continuous and

differentiable unless stated otherwise.

525. If and then there exists at

least one point such that

526. If there is a maximum or minimum at

527. There is a function such that

and (A graphical “proof” is acceptable for this

answer.)

528. There is a function such that there is both an
inflection point and a critical point for some value
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529. Given the graph of determine where is

increasing or decreasing.

530. The graph of is given below. Draw

531. Find the linear approximation to

near

532. Find the differential of and

evaluate for with

Find the critical points and the local and absolute extrema
of the following functions on the given interval.

533. over

534. over

Determine over which intervals the following functions are
increasing, decreasing, concave up, and concave down.

535.

536.

537.

538.

Evaluate the following limits.

539.

540.

541.

542.

Use Newton’s method to find the first two iterations, given
the starting point.

543.

544.

Find the antiderivatives of the following functions.

545.

546.

Graph the following functions by hand. Make sure to label
the inflection points, critical points, zeros, and asymptotes.

547.

548.

549. A car is being compacted into a rectangular solid.
The volume is decreasing at a rate of m3/sec. The length
and width of the compactor are square, but the height is not
the same length as the length and width. If the length and
width walls move toward each other at a rate of m/
sec, find the rate at which the height is changing when the
length and width are m and the height is m.
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550. A rocket is launched into space; its kinetic energy

is given by where is the kinetic

energy in joules, is the mass of the rocket in kilograms,
and is the velocity of the rocket in meters/second.
Assume the velocity is increasing at a rate of m/sec2

and the mass is decreasing at a rate of kg/sec because
the fuel is being burned. At what rate is the rocket’s kinetic
energy changing when the mass is kg and the
velocity is m/sec? Give your answer in mega-Joules

(MJ), which is equivalent to J.

551. The famous Regiomontanus’ problem for angle
maximization was proposed during the th century. A
painting hangs on a wall with the bottom of the painting a
distance feet above eye level, and the top feet above
eye level. What distance (in feet) from the wall should
the viewer stand to maximize the angle subtended by the
painting,

552. An airline sells tickets from Tokyo to Detroit for
There are seats available and a typical flight

books seats. For every decrease in price, the
airline observes an additional five seats sold. What should
the fare be to maximize profit? How many passengers
would be onboard?
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