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4 | APPLICATIONS OF
DERIVATIVES
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Figure 4.1 As arocket is being launched, at what rate should the angle of a video camera change to continue viewing the
rocket? (credit: modification of work by Steve Jurvetson, Wikimedia Commons)
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Introduction

A rocket is being launched from the ground and cameras are recording the event. A video camera is located on the ground
a certain distance from the launch pad. At what rate should the angle of inclination (the angle the camera makes with the
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ground) change to allow the camera to record the flight of the rocket as it heads upward? (See Example 4.3.)

A rocket launch involves two related quantities that change over time. Being able to solve this type of problem is just
one application of derivatives introduced in this chapter. We also look at how derivatives are used to find maximum and
minimum values of functions. As a result, we will be able to solve applied optimization problems, such as maximizing
revenue and minimizing surface area. In addition, we examine how derivatives are used to evaluate complicated limits, to
approximate roots of functions, and to provide accurate graphs of functions.

4.1 | Related Rates

Learning Objectives

4.1.1 Express changing quantities in terms of derivatives.
4.1.2 Find relationships among the derivatives in a given problem.

4.1.3 Use the chain rule to find the rate of change of one quantity that depends on the rate of
change of other quantities.

We have seen that for quantities that are changing over time, the rates at which these quantities change are given by
derivatives. If two related quantities are changing over time, the rates at which the quantities change are related. For
example, if a balloon is being filled with air, both the radius of the balloon and the volume of the balloon are increasing.
In this section, we consider several problems in which two or more related quantities are changing and we study how to
determine the relationship between the rates of change of these quantities.

Setting up Related-Rates Problems
In many real-world applications, related quantities are changing with respect to time. For example, if we consider the
balloon example again, we can say that the rate of change in the volume, V, is related to the rate of change in the radius,

r. In this case, we say that AV and 4 gre related rates because V is related to r. Here we study several examples of

dt dt

related quantities that are changing with respect to time and we look at how to calculate one rate of change given another
rate of change.

Example 4.1

Inflating a Balloon

A spherical balloon is being filled with air at the constant rate of 2 cm? /sec (Figure 4.2). How fast is the radius
increasing when the radius is 3 cm?

Vi

Time 1 Time 2 Time 3
Figure 4.2 As the balloon is being filled with air, both the radius and the volume are increasing with respect to time.

Solution

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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The volume of a sphere of radius r centimeters is

_4_3 3
V—3ﬂr cm”.

Since the balloon is being filled with air, both the volume and the radius are functions of time. Therefore, ¢
seconds after beginning to fill the balloon with air, the volume of air in the balloon is

V() = %ﬂ'[r(t)]S cm?,

Differentiating both sides of this equation with respect to time and applying the chain rule, we see that the rate of
change in the volume is related to the rate of change in the radius by the equation

V(1) = 4alr(®) 1 (o).
The balloon is being filled with air at the constant rate of 2 cm?/sec, so V'iit)=2 cm? /sec. Therefore,
2cm? /sec = (47t[r(t)]2 cm2)~[r/(t)cm/s),
which implies

/ 1
r'(t) = mcm/sec.

When the radius » = 3 cm,

r'(t) = #cm/sec.

@ 4.1 What is the instantaneous rate of change of the radius when r = 6cm?

Before looking at other examples, let’s outline the problem-solving strategy we will be using to solve related-rates problems.

Problem-Solving Strategy: Solving a Related-Rates Problem

Assign symbols to all variables involved in the problem. Draw a figure if applicable.
State, in terms of the variables, the information that is given and the rate to be determined.

Find an equation relating the variables introduced in step 1.

A w D P

Using the chain rule, differentiate both sides of the equation found in step 3 with respect to the independent
variable. This new equation will relate the derivatives.

5. Substitute all known values into the equation from step 4, then solve for the unknown rate of change.

Note that when solving a related-rates problem, it is crucial not to substitute known values too soon. For example, if the
value for a changing quantity is substituted into an equation before both sides of the equation are differentiated, then that
quantity will behave as a constant and its derivative will not appear in the new equation found in step 4. We examine this
potential error in the following example.

Examples of the Process

Let’s now implement the strategy just described to solve several related-rates problems. The first example involves a plane
flying overhead. The relationship we are studying is between the speed of the plane and the rate at which the distance
between the plane and a person on the ground is changing.
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Example 4.2

An Airplane Flying at a Constant Elevation

An airplane is flying overhead at a constant elevation of 4000 ft. A man is viewing the plane from a position
3000 ft from the base of a radio tower. The airplane is flying horizontally away from the man. If the plane is
flying at the rate of 600 ft/sec, at what rate is the distance between the man and the plane increasing when the

plane passes over the radio tower?

Solution

Step 1. Draw a picture, introducing variables to represent the different quantities involved.

“ vl [_
i X
Figure 4.3 An airplane is flying at a constant height of 4000 ft. The distance between the

person and the airplane and the person and the place on the ground directly below the airplane
are changing. We denote those quantities with the variables s and x, respectively.

As shown, x denotes the distance between the man and the position on the ground directly below the airplane.
The variable s denotes the distance between the man and the plane. Note that both x and s are functions of

time. We do not introduce a variable for the height of the plane because it remains at a constant elevation of
4000 ft. Since an object’s height above the ground is measured as the shortest distance between the object and

the ground, the line segment of length 4000 ft is perpendicular to the line segment of length x feet, creating a
right triangle.

Step 2. Since x denotes the horizontal distance between the man and the point on the ground below the plane,
dx/dt represents the speed of the plane. We are told the speed of the plane is 600 ft/sec. Therefore, % = 600
ft/sec. Since we are asked to find the rate of change in the distance between the man and the plane when the plane
is directly above the radio tower, we need to find ds/dt when x = 3000 ft.

Step 3. From the figure, we can use the Pythagorean theorem to write an equation relating x and s:
[x(D)* + 40007 = [s()]*.

Step 4. Differentiating this equation with respect to time and using the fact that the derivative of a constant is
zero, we arrive at the equation

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Step 5. Find the rate at which the distance between the man and the plane is increasing when the plane is directly

over the radio tower. That is, find % when x = 3000 ft. Since the speed of the plane is 600 ft/sec, we know

that X = 600 ft/sec. We are not given an explicit value for s; however, since we are trying to find ds when

dt dt
x = 3000 ft, we can use the Pythagorean theorem to determine the distance s when x = 3000 and the height
is 4000 ft. Solving the equation
30002 + 4000 = 52

for s, we have s = 5000 ft at the time of interest. Using these values, we conclude that ds/dt is a solution of

the equation
(3000)(600) = (5000) %

Therefore,

ds _ 3000-600 _
= 5000 — 360 ft/sec.

Note: When solving related-rates problems, it is important not to substitute values for the variables too soon. For
example, in step 3, we related the variable quantities x(¢) and s(#) by the equation

[x()]? + 40002 = [s()]>.

Since the plane remains at a constant height, it is not necessary to introduce a variable for the height, and we are
allowed to use the constant 4000 to denote that quantity. However, the other two quantities are changing. If we
mistakenly substituted x(#) = 3000 into the equation before differentiating, our equation would have been

30002 + 40002 = [s(1)].

After differentiating, our equation would become

— ds
0 = s(2) dr
As aresult, we would incorrectly conclude that % =0.

4.2 What is the speed of the plane if the distance between the person and the plane is increasing at the rate of
300 ft/sec?

We now return to the problem involving the rocket launch from the beginning of the chapter.

Example 4.3

Chapter Opener: A Rocket Launch
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. A
Figure 4.4 (credit: modification of work by Steve Jurvetson,
Wikimedia Commons)

A rocket is launched so that it rises vertically. A camera is positioned 5000 ft from the launch pad. When the
rocket is 1000 ft above the launch pad, its velocity is 600 ft/sec. Find the necessary rate of change of the
camera’s angle as a function of time so that it stays focused on the rocket.

Solution

Step 1. Draw a picture introducing the variables.

5000 ft
Figure 4.5 A camera is positioned 5000 ft from the launch pad of the rocket. The height of the
rocket and the angle of the camera are changing with respect to time. We denote those quantities
with the variables & and 6, respectively.

Let i denote the height of the rocket above the launch pad and @ be the angle between the camera lens and the

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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ground.
Step 2. We are trying to find the rate of change in the angle of the camera with respect to time when the rocket is

1000 ft off the ground. That is, we need to find % when & = 1000 ft. At that time, we know the velocity of the

rocket is % = 600 ft/sec.

Step 3. Now we need to find an equation relating the two quantities that are changing with respect to time: 4 and
6. How can we create such an equation? Using the fact that we have drawn a right triangle, it is natural to think
about trigonometric functions. Recall that tan@ is the ratio of the length of the opposite side of the triangle to the
length of the adjacent side. Thus, we have

__h
tand = 3000"
This gives us the equation

h =5000tan6.

Step 4. Differentiating this equation with respect to time ¢, we obtain

dh _ 2p9d0
d = 5000sec odt'

Step 5. We want to find % when 4 = 1000 ft. At this time, we know that % = 600 ft/sec. We need to

determine sec”d. Recall that sec@ is the ratio of the length of the hypotenuse to the length of the adjacent
side. We know the length of the adjacent side is 5000 ft. To determine the length of the hypotenuse, we use the
Pythagorean theorem, where the length of one leg is 5000 ft, the length of the other leg is # = 1000 ft, and

the length of the hypotenuse is ¢ feet as shown in the following figure.

1000

5000
We see that

10002 + 50002 = ¢?
and we conclude that the hypotenuse is
¢ = 1000V26 ft.
Therefore, when 4 = 1000, we have
2
2, _ 1000«/76) _26
sec”d ‘( 5000 ) T 25°

Recall from step 4 that the equation relating 49 1, our known values is

dt
dh _ 29d0
= 5000sec Qd[.

When /£ =1000ft, we know that % = 600 ft/sec and sec?@ = % Substituting these values into the

347
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previous equation, we arrive at the equation

600 = 5000(% i’g.

Therefore, do _ 3 rad/sec.

dt 26

4.3 What rate of change is necessary for the elevation angle of the camera if the camera is placed on the
ground at a distance of 4000 ft from the launch pad and the velocity of the rocket is 500 ft/sec when the rocket

is 2000 ft off the ground?

In the next example, we consider water draining from a cone-shaped funnel. We compare the rate at which the level of water
in the cone is decreasing with the rate at which the volume of water is decreasing.

Example 4.4

Water Draining from a Funnel

Water is draining from the bottom of a cone-shaped funnel at the rate of 0.03 ft> /sec. The height of the funnel
is 2 ft and the radius at the top of the funnel is 1 ft. At what rate is the height of the water in the funnel changing

when the height of the water is %ft?

Solution

Step 1: Draw a picture introducing the variables.

Figure 4.6 Water is draining from a funnel of height 2 ft and
radius 1 ft. The height of the water and the radius of water are
changing over time. We denote these quantities with the
variables /i and r, respectively.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Let h denote the height of the water in the funnel, » denote the radius of the water at its surface, and V denote
the volume of the water.

Step 2: We need to determine % when h = %ft. We know that ‘2—‘; = —0.03 ft/sec.

Step 3: The volume of water in the cone is
V= %ﬂ'r2 h.

From the figure, we see that we have similar triangles. Therefore, the ratio of the sides in the two triangles is the

same. Therefore, £ =L or r = h

=7 5 Using this fact, the equation for volume can be simplified to

2
-

Step 4: Applying the chain rule while differentiating both sides of this equation with respect to time #, we obtain

av _m,2dh

dt 4 dt’
Step 5: We want to find % when h = %ft. Since water is leaving at the rate of 0.03 ft3 /sec, we know that
4V — _0.03 ft3 /sec. Therefore,

dt

which implies

_ —ndh
0.03 = 16 ar-

It follows that

dh _ _ 048 _ _
= s 0.153 ft/sec.

@ 4.4 Atwhat rate is the height of the water changing when the height of the water is %ft?
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4.1 EXERCISES

For the following exercises, find the quantities for the given
equation.

. oody _ _ 2 oodx _
1. Find ar at x=1and y=x"+3 if dt_4'

by

2. Find 4 at x = -2 andy=2x2+1 if =

dt

3. Find % at (x, y)=(1, 3) and z2=x2+y2 if

dx _ dy _
dt_4 and dt_3'

For the following exercises, sketch the situation if
necessary and used related rates to solve for the quantities.

4. [T]If two electrical resistors are connected in parallel,
the total resistance (measured in ohms, denoted by the
Greek capital letter omega, ) is given by the equation

N I R, isincreasing at a rate of 0.5 Q/min

R™ R, R,
and R, decreases at a rate of 1.1Q/min, at what rate
does the total resistance change when R; =20Q and

Ry =50Q°

5. A 10-ft ladder is leaning against a wall. If the top of the
ladder slides down the wall at a rate of 2 ft/sec, how fast
is the bottom moving along the ground when the bottom of
the ladder is 5 ft from the wall?

10 ft

6. A 25-ft ladder is leaning against a wall. If we push the
ladder toward the wall at a rate of 1 ft/sec, and the bottom
of the ladder is initially 20 ft away from the wall, how

fast does the ladder move up the wall 5 sec after we start
pushing?

Chapter 4 | Applications of Derivatives

7. Two airplanes are flying in the air at the same height:
airplane A is flying east at 250 mi/h and airplane B is flying
north at 300 mi/h. If they are both heading to the same
airport, located 30 miles east of airplane A and 40 miles
north of airplane B, at what rate is the distance between the
airplanes changing?

AD

8. You and a friend are riding your bikes to a restaurant
that you think is east; your friend thinks the restaurant is
north. You both leave from the same point, with you riding
at 16 mph east and your friend riding 12 mph north. After

you traveled 4 mi, at what rate is the distance between you

changing?

9. Two buses are driving along parallel freeways that are
5 mi apart, one heading east and the other heading west.

Assuming that each bus drives a constant 55 mph, find the

rate at which the distance between the buses is changing
when they are 13 mi apart, heading toward each other.

10. A 6-ft-tall person walks away from a 10-ft lamppost at
a constant rate of 3 ft/sec. What is the rate that the tip of
the shadow moves away from the pole when the person is
10 ft away from the pole?

10

[ 10 } X -l

11. Using the previous problem, what is the rate at which
the tip of the shadow moves away from the person when the
person is 10 ft from the pole?

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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12. A 5-ft-tall person walks toward a wall at a rate of 2
ft/sec. A spotlight is located on the ground 40 ft from the
wall. How fast does the height of the person’s shadow on
the wall change when the person is 10 ft from the wall?

13. Using the previous problem, what is the rate at which
the shadow changes when the person is 10 ft from the wall,
if the person is walking away from the wall at a rate of 2 ft/
sec?

14. A helicopter starting on the ground is rising directly
into the air at a rate of 25 ft/sec. You are running on the
ground starting directly under the helicopter at a rate of 10
ft/sec. Find the rate of change of the distance between the
helicopter and yourself after 5 sec.

15. Using the previous problem, what is the rate at which
the distance between you and the helicopter is changing
when the helicopter has risen to a height of 60 ft in the air,
assuming that, initially, it was 30 ft above you?

For the following exercises, draw and label diagrams to
help solve the related-rates problems.

16. The side of a cube increases at a rate of % m/sec. Find

the rate at which the volume of the cube increases when the
side of the cube is 4 m.

17. The volume of a cube decreases at a rate of 10 m%/s.
Find the rate at which the side of the cube changes when
the side of the cube is 2 m.

18. The radius of a circle increases at a rate of 2 m/sec.

Find the rate at which the area of the circle increases when
the radius is 5 m.

19. The radius of a sphere decreases at a rate of 3 m/sec.

Find the rate at which the surface area decreases when the
radius is 10 m.

20. The radius of a sphere increases at a rate of 1 m/sec.

Find the rate at which the volume increases when the radius
is 20 m.

21. The radius of a sphere is increasing at a rate of 9 cm/
sec. Find the radius of the sphere when the volume and the
radius of the sphere are increasing at the same numerical
rate.

22. The base of a triangle is shrinking at a rate of 1 cm/min
and the height of the triangle is increasing at a rate of 5 cm/
min. Find the rate at which the area of the triangle changes
when the height is 22 cm and the base is 10 cm.

23. A triangle has two constant sides of length 3 ft and 5
ft. The angle between these two sides is increasing at a rate
of 0.1 rad/sec. Find the rate at which the area of the triangle
is changing when the angle between the two sides is 7/6.

351

24. A triangle has a height that is increasing at a rate of 2
cm/sec and its area is increasing at a rate of 4 cm?%/sec. Find
the rate at which the base of the triangle is changing when
the height of the triangle is 4 cm and the area is 20 cm?.

For the following exercises, consider a right cone that is
leaking water. The dimensions of the conical tank are a
height of 16 ft and a radius of 5 ft.

25. How fast does the depth of the water change when the
water is 10 ft high if the cone leaks water at a rate of 10
£t3/min?

26. Find the rate at which the surface area of the water
changes when the water is 10 ft high if the cone leaks water
at a rate of 10 ft3/min.

27. 1If the water level is decreasing at a rate of 3 in/min
when the depth of the water is 8 ft, determine the rate at
which water is leaking out of the cone.

28. A vertical cylinder is leaking water at a rate of 1
ft3/sec. If the cylinder has a height of 10 ft and a radius of 1
ft, at what rate is the height of the water changing when the
height is 6 ft?

29. A cylinder is leaking water but you are unable to
determine at what rate. The cylinder has a height of 2 m
and a radius of 2 m. Find the rate at which the water is
leaking out of the cylinder if the rate at which the height is
decreasing is 10 cm/min when the height is 1 m.

30. A trough has ends shaped like isosceles triangles,
with width 3 m and height 4 m, and the trough is 10
m long. Water is being pumped into the trough at a rate

of 5m>/min. At what rate does the height of the water
change when the water is 1 m deep?

3]



31. A tank is shaped like an upside-down square pyramid,
with base of 4 m by 4 m and a height of 12 m (see the
following figure). How fast does the height increase when
the water is 2 m deep if water is being pumped in at a rate

of % m/sec?

=4y

For the following problems, consider a pool shaped like the
bottom half of a sphere, that is being filled at a rate of 25
ft3/min. The radius of the pool is 10 ft.

32. Find the rate at which the depth of the water is
changing when the water has a depth of 5 ft.

33. Find the rate at which the depth of the water is
changing when the water has a depth of 1 ft.

34. If the height is increasing at a rate of 1 in./sec when
the depth of the water is 2 ft, find the rate at which water is
being pumped in.

35. Gravel is being unloaded from a truck and falls into a
pile shaped like a cone at a rate of 10 ft*min. The radius of
the cone base is three times the height of the cone. Find the
rate at which the height of the gravel changes when the pile
has a height of 5 ft.

36. Using a similar setup from the preceding problem, find
the rate at which the gravel is being unloaded if the pile is
5 ft high and the height is increasing at a rate of 4 in./min.

For the following exercises, draw the situations and solve
the related-rate problems.

37. You are stationary on the ground and are watching
a bird fly horizontally at a rate of 10 m/sec. The bird is

located 40 m above your head. How fast does the angle of
elevation change when the horizontal distance between you
and the bird is 9 m?

38. You stand 40 ft from a bottle rocket on the ground and
watch as it takes off vertically into the air at a rate of 20 ft/
sec. Find the rate at which the angle of elevation changes
when the rocket is 30 ft in the air.

Chapter 4 | Applications of Derivatives

39. A lighthouse, L, is on an island 4 mi away from the
closest point, P, on the beach (see the following image). If
the lighthouse light rotates clockwise at a constant rate of
10 revolutions/min, how fast does the beam of light move
across the beach 2 mi away from the closest point on the
beach?

<o &3

40. Using the same setup as the previous problem,
determine at what rate the beam of light moves across the
beach 1 mi away from the closest point on the beach.

41. You are walking to a bus stop at a right-angle corner.
You move north at a rate of 2 m/sec and are 20 m south
of the intersection. The bus travels west at a rate of 10 m/
sec away from the intersection — you have missed the bus!
What is the rate at which the angle between you and the bus
is changing when you are 20 m south of the intersection and
the bus is 10 m west of the intersection?

For the following exercises, refer to the figure of baseball
diamond, which has sides of 90 ft.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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42. [T] A batter hits a ball toward third base at 75 ft/sec
and runs toward first base at a rate of 24 ft/sec. At what rate
does the distance between the ball and the batter change
when 2 sec have passed?

43. [T] A batter hits a ball toward second base at 80 ft/sec
and runs toward first base at a rate of 30 ft/sec. At what rate
does the distance between the ball and the batter change
when the runner has covered one-third of the distance to
first base? (Hint: Recall the law of cosines.)

44. [T] A batter hits the ball and runs toward first base at
a speed of 22 ft/sec. At what rate does the distance between
the runner and second base change when the runner has run
30 ft?

45. [T] Runners start at first and second base. When the
baseball is hit, the runner at first base runs at a speed of
18 ft/sec toward second base and the runner at second base
runs at a speed of 20 ft/sec toward third base. How fast is
the distance between runners changing 1 sec after the ball
is hit?
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4.2 | Linear Approximations and Differentials

Learning Objectives

4.2.1 Describe the linear approximation to a function at a point.

4.2.2 Write the linearization of a given function.

4.2.3 Draw a graph that illustrates the use of differentials to approximate the change in a
guantity.

4.2.4 Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we
examine another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions
are the easiest functions with which to work, so they provide a useful tool for approximating function values. In addition,
the ideas presented in this section are generalized later in the text when we study how to approximate functions by higher-
degree polynomials Introduction to Power Series and Functions (http://cnx.org/content/im53760/latest/) .

Linear Approximation of a Function at a Point
Consider a function f that is differentiable at a point x = a. Recall that the tangent line to the graph of f at a is given
by the equation

y=f@+ f(a)x - a).

For example, consider the function f(x) = % at a = 2. Since f is differentiable at x =2 and f'(x) = — %, we see
X

that f'(2) = — % Therefore, the tangent line to the graph of f at a =2 is given by the equation

=1_1,_

1

Figure 4.7(a) shows a graph of f(x) =+ along with the tangent line to f* at x = 2. Note that for x near 2, the graph of

the tangent line is close to the graph of f. As a result, we can use the equation of the tangent line to approximate f(x) for

x near 2. For example, if x = 2.1, the y value of the corresponding point on the tangent line is
y=1_Llo1-2)=0475
>~ 42 475.
The actual value of f(2.1) is given by
=1 5
fQ.1)= ST~ 0.47619.

Therefore, the tangent line gives us a fairly good approximation of f(2.1) (Figure 4.7(b)). However, note that for values
of x far from 2, the equation of the tangent line does not give us a good approximation. For example, if x = 10, the y
-value of the corresponding point on the tangent line is

=1_lqo-oy=l_o—_
y=5 4(10 2)= 2=-15,

1
2

whereas the value of the function at x = 10 is f(10) = 0.1.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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4
Ll | Actual value of
0.485 1 f(2.1) Graph of
function
y 0.48
41 (2.1, 0.47619)

/(;1 0.475)

Approximate
value of f(2.1)

4\5\5\7 % 0.455 1 Tangent line

3
—14 11 ofx =2
y=2-3%-2 0.45}
,2._
0.445 1

0 Y 200 21 211 213 213X

(@) (b)

Figure 4.7 (a) The tangent line to f(x) = 1/x at x = 2 provides a good approximation to f* for x near 2.
(b) At x = 2.1, the value of y on the tangent line to f(x) = 1/x is 0.475. The actual value of f(2.1) is
1/2.1, which is approximately 0.47619.

In general, for a differentiable function f, the equation of the tangent line to f at x = a can be used to approximate

f(x) for x near a. Therefore, we can write
f(x) = f(a) + f'(a)(x — a) for x near a.
We call the linear function
Lx) = f(a) + f(@)(x — a) (4.1)

the linear approximation, or tangent line approximation, of f at x =a. This function L is also known as the

linearization of f at x = a.

To show how useful the linear approximation can be, we look at how to find the linear approximation for f(x) = vx at
x=09.

Example 4.5

Linear Approximation of vx

Find the linear approximation of f(x) = vx at x =9 and use the approximation to estimate V9.1.

Solution
Since we are looking for the linear approximation at x =9, using Equation 4.1 we know the linear
approximation is given by

Lx)=fO) + f'O)x-9).
We need to find f(9) and f'(9).
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fo=vx > f(9=19=3
oy = L oy = L _1
fW=qz = [O=5=¢
Therefore, the linear approximation is given by Figure 4.8.
L) =3+£(x=9)

Using the linear approximation, we can estimate V9.1 by writing

V9.1 = £(9.1) ~ L(9.1) = 3 +%(9.1 —9) ~3.0167.

0f 2 4 6 8 10 12 14 16%

Figure 4.8 The local linear approximation to f(x) = vx at

x =9 provides an approximation to f for x near 9.

Analysis
Using a calculator, the value of V9.1 to four decimal places is 3.0166. The value given by the linear

approximation, 3.0167, is very close to the value obtained with a calculator, so it appears that using this linear
approximation is a good way to estimate Vx, atleast for x near 9. At the same time, it may seem odd to use

a linear approximation when we can just push a few buttons on a calculator to evaluate V9.1. However, how

does the calculator evaluate V9.1? The calculator uses an approximation! In fact, calculators and computers use
approximations all the time to evaluate mathematical expressions; they just use higher-degree approximations.

@ 45 Find the local linear approximation to f(x) = ¥x at x=8. Useitto approximate 3\/ 8.1 to five decimal

places.

Example 4.6

Linear Approximation of sinx

I

3 and use it to approximate sin(62°).

Find the linear approximation of f(x) =sinx at x =

Solution

First we note that since £ rad is equivalent to 60°, using the linear approximation at x = /3 seems

3
reasonable. The linear approximation is given by

= (g7 8-
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We see that

|°8)

i =sns = fg)=sofs) 2

f'(x) =cosx => f’(%) = cos(%) = %

Therefore, the linear approximation of f at x = z/3 is given by Figure 4.9.

L =5+ 3e3)

To estimate sin(62°) using L, we must first convert 62° to radians. We have 62° = %g radians, so the

estimate for sin(62°) is given by

sin(62°) = f($28) » [(022) = L3 4 (622 _ x) A3 | L(2a) A3, 1 088348,

2 180 2 180 2 180
Y\
2-.
LI (P A
B y=7737\
T 3
kil ?)

1..
—i//ﬂ 1 2 3 4 5 X
_14

Figure 4.9 The linear approximation to f(x) = sinx at x = z/3 provides an approximation
to sinx for x near 7z/3.

@ 4.6 Find the linear approximation for f(x) = cosx at x = %

Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation
for f(x)=(1+x)" at x=0, which can be used to estimate roots and powers for real numbers near 1. The same idea

can be extended to a function of the form f(x) = (m + x)" to estimate roots and powers near a different number .

Example 4.7

Approximating Roots and Powers

Find the linear approximation of f(x) = (1 + x)" at x = 0. Use this approximation to estimate (1.01)3.

Solution

The linear approximation at x = 0 is given by
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Lx) = f(0) + f'O)(x - 0).
Because
f=0+0" = f0)=1
f@=n1+0""" > fO)=n,
the linear approximation is given by Figure 4.10(a).
Lx)=14+nx-0)=1+nx
We can approximate (1 .01)3 by evaluating L(0.01) when n = 3. We conclude that
(1.01)3 = f(1.01) = L(1.01) = 1 + 3(0.01) = 1.03.
y y
3+ 1.0321 .
L(x) = 1+ 3x L0315 ) =Q +x)
LX) =1+ 3x
2+ 1.031+
1.0305+
(0.01, 1.030301)
d (0.01, 1.03)
e
fix) = (1 + x)® 1.0295 +
: = - - 1.029 +
-2 -1 0 1 2%
1.0285 +
0?/\' T0.0085  0.0095 o.o=105 Tooms X
@ (b)
Figure 4.10 (a) The linear approximation of f(x) at x = 0 is L(x). (b) The actual value of 1.01° is
1.030301. The linear approximation of f(x) at x = 0 estimates 1.013 to be 1.03.
4.7 Find the linear approximation of f(x) = (1 + x)4 at x = 0 without using the result from the preceding
example.
Differentials

We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the
amount a function value changes as a result of a small change in the input. To discuss this more formally, we define a related
concept: differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small

change in input values.
When we first looked at derivatives, we used the Leibniz notation dy/dx to represent the derivative of y with respect to

x. Although we used the expressions dy and dx in this notation, they did not have meaning on their own. Here we see a
meaning to the expressions dy and dx. Suppose y = f(x) is a differentiable function. Let dx be an independent variable that

can be assigned any nonzero real number, and define the dependent variable dy by
dy = f'(x)dx. (4.2)

It is important to notice that dy is a function of both x and dx. The expressions dy and dx are called differentials. We can
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divide both sides of Equation 4.2 by dx, which yields

dy _ (4.3)
yrie ().

This is the familiar expression we have used to denote a derivative. Equation 4.2 is known as the differential form of
Equation 4.3.

Example 4.8

Computing differentials

For each of the following functions, find dy and evaluate when x =3 and dx = 0.1.
a. y= X% +2x

b. y=cosx

Solution

The key step is calculating the derivative. When we have that, we can obtain dy directly.
a. Since f(x) = 2+ 2x, weknow f’(x) =2x+2, and therefore

dy = 2x + 2)dx.

When x =3 and dx = 0.1,
dy=2-3+2)(0.1)=0.8.

b. Since f(x) =cosx, f'(x)= —sin(x). This gives us
dy = —sinxdx.

When x =3 and dx = 0.1,
dy = —sin(3)(0.1) = —0.1sin(3).

2
@ 48 por y=¢*, find dy.

We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a
function resulting from a small change in input values. Consider a function f that is differentiable at point a. Suppose

the input x changes by a small amount. We are interested in how much the output y changes. If x changes from a to

a +dx, then the change in x is dx (also denoted Ax), and the changein y is given by

Ay = f(a + dx) — f(a).

Instead of calculating the exact change in y, however, it is often easier to approximate the change in y by using a linear

approximation. For x near a, f(x) can be approximated by the linear approximation

L(x) = f(a) + f'(a)(x — a).
Therefore, if dx is small,

fla+dx) ~ L(a+dx) = f(a) + f'(a)(a + dx — a).
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That is,
fla+dx)— f(a) = L(a + dx) — f(a) = f'(a)dx.
In other words, the actual change in the function f if x increases from a to a+ dx is approximately the difference
between L(a + dx) and f(a), where L(x) is the linear approximation of f at a. By definition of L(x), this difference
is equal to f'(a)dx. In summary,
Ay = f(a+dx) — f(a) = L(a + dx) — f(a) = f'(a)dx = dy.

Therefore, we can use the differential dy = f’(a)dx to approximate the change in y if x increases from x =a to

X = a + dx. We can see this in the following graph.

y
L(x)
(a + dx, fla + dx))
(@ + dx, L(a + dx) - -f
gy = ,,(a)dxi Ay = f(a + dx) - f(a)
________ L N
A -
a a + dx X

Figure 4.11 The differential dy = f’(a)dx is used to approximate the actual

change in y if x increases from a to a + dx.

We now take a look at how to use differentials to approximate the change in the value of the function that results from a
small change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values
of functions and the result is very close to what we would obtain with the more exact calculation.

Example 4.9

Approximating Change with Differentials
Let y = x% + 2x. Compute Ay anddyat x =3 if dx=0.1.
Solution
The actual change in y if x changes from x =3 to x = 3.1 is given by
Ay=f(3.1) - f(3) = [B.1)% +2(3.1)] - [32+2(3)] = 0.81.

The approximate change in y is given by dy = f’(3)dx. Since f'(x) =2x+2, we have
dy = f'(3)dx = (2(3) +2)(0.1) = 0.8.

@' 49 TFor y=x>+2x, find Ay and dy at x =3 if dx =0.2.
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Calculating the Amount of Error

Any type of measurement is prone to a certain amount of error. In many applications, certain quantities are calculated based
on measurements. For example, the area of a circle is calculated by measuring the radius of the circle. An error in the
measurement of the radius leads to an error in the computed value of the area. Here we examine this type of error and study
how differentials can be used to estimate the error.

Consider a function f with an input that is a measured quantity. Suppose the exact value of the measured quantity is a,
but the measured value is a + dx. We say the measurement error is dx (or Ax). As a result, an error occurs in the calculated

quantity f(x). This type of error is known as a propagated error and is given by
Ay = f(a+dx) - f(a).

Since all measurements are prone to some degree of error, we do not know the exact value of a measured quantity, so we
cannot calculate the propagated error exactly. However, given an estimate of the accuracy of a measurement, we can use
differentials to approximate the propagated error Ay. Specifically, if f is a differentiable function at a, the propagated

error is
Ay ~ dy = f'(a)dx.
Unfortunately, we do not know the exact value a. However, we can use the measured value a + dx, and estimate
Ay~ dy =~ f'(a+ dx)dx.

In the next example, we look at how differentials can be used to estimate the error in calculating the volume of a box if we
assume the measurement of the side length is made with a certain amount of accuracy.

Example 4.10

Volume of a Cube

Suppose the side length of a cube is measured to be 5 cm with an accuracy of 0.1 cm.
a. Use differentials to estimate the error in the computed volume of the cube.

b. Compute the volume of the cube if the side length is (i) 4.9 cm and (ii) 5.1 cm to compare the estimated
error with the actual potential error.

Solution

a. The measurement of the side length is accurate to within +0.1 cm. Therefore,

—0.1 <dx<0.1.

The volume of a cube is given by V = x> , 'which leads to

dv = 3x%dx.

Using the measured side length of 5 cm, we can estimate that

—-3(5)%(0.1) < dV < 3(5)%0.1).

Therefore,
-75<dV <75,
b. If the side length is actually 4.9 cm, then the volume of the cube is

V(4.9) = (4.9)% = 117.649 cm?.
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If the side length is actually 5.1 cm, then the volume of the cube is

V(5.1) = (5.1)% = 132.651 cm’.

Therefore, the actual volume of the cube is between 117.649 and 132.651. Since the side length is
measured to be 5 cm, the computed volume is V(5) = 53 = 125. Therefore, the error in the computed

volume is

117.649 — 125 < AV < 132.651 — 125.

That is,
—7.351 < AV <7.651.

We see the estimated error dV is relatively close to the actual potential error in the computed volume.

4.10 Estimate the error in the computed volume of a cube if the side length is measured to be 6 cm with an
accuracy of 0.2 cm.

The measurement error dx (=Ax) and the propagated error Ay are absolute errors. We are typically interested in the size
of an error relative to the size of the quantity being measured or calculated. Given an absolute error Ag for a particular

quantity, we define the relative error as %, where ¢ is the actual value of the quantity. The percentage error is the
relative error expressed as a percentage. For example, if we measure the height of a ladder to be 63 in. when the actual
height is 62 in., the absolute error is 1 in. but the relative error is é =0.016, or 1.6%. By comparison, if we measure the
width of a piece of cardboard to be 8.25 in. when the actual width is 8 in., our absolute error is 1 in., whereas the relative

4

025 _ 1
8 32

0.25 in. is less than 1 in.

Example 4.11

Relative and Percentage Error

error is or 3.1%. Therefore, the percentage error in the measurement of the cardboard is larger, even though

An astronaut using a camera measures the radius of Earth as 4000 mi with an error of +80 mi. Let’s use

differentials to estimate the relative and percentage error of using this radius measurement to calculate the volume
of Earth, assuming the planet is a perfect sphere.

Solution

If the measurement of the radius is accurate to within +80, we have
—80 < dr < 80.

Since the volume of a sphere is given by V = (i)ﬂ'rs, we have

3
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dV = 4zrdr.
Using the measured radius of 4000 mi, we can estimate
—472(4000)%(80) < dV < 47(4000)2(80).

To estimate the relative error, consider d—V. Since we do not know the exact value of the volume V, use the

1%

measured radius 7 = 4000 mi to estimate V. We obtain V ~ (%)ﬂ(4000)3. Therefore the relative error satisfies

—47(4000)°(80) _ gV _ 47(4000)*(80)
424000033 T V' T 42(4000)°/3
which simplifies to

—0.06 < dTV < 0.06.

The relative error is 0.06 and the percentage error is 6%.

@ 4.11 Determine the percentage error if the radius of Earth is measured to be 3950 mi with an error of +100
mi
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4.2 EXERCISES

46. What is the linear approximation for any generic linear
function y =mx+b?

47. Determine the necessary conditions such that the
linear approximation function is constant. Use a graph to
prove your result.

48. Explain why the linear approximation becomes less
accurate as you increase the distance between x and a.

Use a graph to prove your argument.
49. When is the linear approximation exact?

For the following exercises, find the linear approximation
L(x) to y = f(x) near x = a for the function.

50. f(x)=x+x4,a=0
51. f(x):%, a=2

52. f(x)=tanx,a=2%<

~

53. f(x) =sinx, a= %

54. f(x) = xsinx, a =2n
55. f(x) = sinzx, a=0

For the following exercises, compute the values given
within 0.01 by deciding on the appropriate f(x) and a,

and evaluating L(x) = f(a) + f'(a)(x — a). Check your

answer using a calculator.
56. [T] (2.001)°
57. [T] sin(0.02)

58. [T] cos(0.03)
59. [T] (15.99)14

60. [T] ﬁ

61. [T] sin(3.14)

For the following exercises, determine the appropriate
f(x) and a, and evaluate L(x) = f(a) + f' (a)(x — a).

Calculate the numerical error in the linear approximations
that follow.
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62. [T] (1.01)3

63. [T] cos(0.01)
64. [T] (sin(0.01)

65. [T] (1.01)73

10

66. [Tl (1+1—10)

67. [T] v8.99

For the following exercises, find the differential of the
function.

68. y=3x4+x2—2x+1

69. y=xcosx

70. y=V1+x
2

_Xx"+2

noy= x—1

For the following exercises, find the differential and
evaluate for the given x and dx.

72. y=3x2—x+6, x=2, dx=0.1

__1 _ _
73. Y= x=1, dx=025

_ _ _
74. y=tanx, x=0, dx—lo

2
75. y=3x +2, x=0, dx=0.1

76. y=SM2D o 4x=025

77. y=x3+2x+%, x=1, dx=0.05

For the following exercises, find the change in volume dV
or in surface area dA.

78. dV if the sides of a cube change from 10 to 10.1.
79. dA if the sides of a cube change from x to x + dx.

80. dA if the radius of a sphere changes from r by dr.
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81. dV if the radius of a sphere changes from r by dr.

82. dV if a circular cylinder with » =2 changes height
from 3 cm to 3.05 cm.

83. dV if a circular cylinder of height 3 changes from
r=2t r=19cm.

For the following exercises, use differentials to estimate the
maximum and relative error when computing the surface
area or volume.

84. A spherical golf ball is measured to have a radius of
5mm, with a possible measurement error of 0.1 mm.

What is the possible change in volume?

85. A pool has a rectangular base of 10 ft by 20 ft and a
depth of 6 ft. What is the change in volume if you only fill
itup to 5.5 ft?

86. An ice cream cone has height 4 in. and radius 1 in. If
the cone is 0.1 in. thick, what is the difference between the
volume of the cone, including the shell, and the volume of
the ice cream you can fit inside the shell?

For the following exercises, confirm the approximations by
using the linear approximation at x = 0.

87. vl—le—%x

88. L~

V1 — x2

365
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4.3 | Maxima and Minima

Learning Objectives

4.3.1 Define absolute extrema.

4.3.2 Define local extrema.

4.3.3 Explain how to find the critical points of a function over a closed interval.

4.3.4 Describe how to use critical points to locate absolute extrema over a closed interval.

Given a particular function, we are often interested in determining the largest and smallest values of the function. This
information is important in creating accurate graphs. Finding the maximum and minimum values of a function also
has practical significance because we can use this method to solve optimization problems, such as maximizing profit,
minimizing the amount of material used in manufacturing an aluminum can, or finding the maximum height a rocket can
reach. In this section, we look at how to use derivatives to find the largest and smallest values for a function.

Absolute Extrema

Consider the function f(x) = x2+ 1 over the interval (=00, ). As x = +o0, f(x) > oo. Therefore, the function
does not have a largest value. However, since 2+1 > 1 for all real numbers x and x2+1=1 when x= 0, the
function has a smallest value, 1, when x = 0. We say that 1 is the absolute minimum of f(x) = xZ+1 and it occurs at

x = 0. We say that f(x) = x% 41 does not have an absolute maximum (see the following figure).

3 2-1 9 1 2 ax
_1__

Figure 4.12 The given function has an absolute minimum of 1
at x = 0. The function does not have an absolute maximum.

Definition

Let f be a function defined over an interval / and let ¢ € I. We say f has an absolute maximum on / at c if
f(c) > f(x) forall x € I. Wesay f has an absolute minimum on / at c if f(c) < f(x) forall x € I. If f has
an absolute maximum on / at ¢ or an absolute minimum on / at ¢, wesay f has an abselute extremum on / at

C.

Before proceeding, let’s note two important issues regarding this definition. First, the term absolute here does not refer to
absolute value. An absolute extremum may be positive, negative, or zero. Second, if a function f has an absolute extremum

over an interval / at ¢, the absolute extremum is f(c). The real number c is a point in the domain at which the absolute

extremum occurs. For example, consider the function f(x) = 1/(x2 + 1) over the interval (—oo0, o). Since

fO) =1>—1— =7

241

for all real numbers x, we say f has an absolute maximum over (—oo, o) at x = 0. The absolute maximum is
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f(@0) =1. Ttoccurs at x =0, asshown in Figure 4.13(b).

A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure 4.13
shows several functions and some of the different possibilities regarding absolute extrema. However, the following theorem,
called the Extreme Value Theorem, guarantees that a continuous function f over a closed, bounded interval [a, b] has

both an absolute maximum and an absolute minimum.

y y y
61 3 3
41 21 24

e s 24 ex 519 12 ax SN R e
24 -1 -1+
41 -2+ -2+

-6+ -3+ -31

f(x) = X% on (—=, =) fx) = 7 on (==, %) f(x) = cos(x) on (—2, =)

No absolute maximum Absolute maximum of L atx = 0 Absolute maximum of 1 at x = 0,
No absolute minimum No absolute minimum 2, *41...
Absolute minimum of =1 atx = =+,
+37...
(@ (b) (©)
y y y
3 51 5 :
2¢ 4+ 44 H
1 \ / 3+ 31 E
1
; P ; 2+ 2+ i
2 -1 O 1 5/5 4x i
_1 4 1 4 1 + :
ol : ;
-1 9 1 2 3 4 5% -1 9 1 2 3 4 55X
-3 -1+ -1
2-x2 0=x<2
f(x) = _ _x
() {x—3 2=x=4 fx) = (x — 22 on[1, 4] fix) = 5% on [0, 2)
Absolute maximum of 2 atx = 0 Absolute maximum of 4 atx = 4 No absolute maximum
No absolute minimum Absolute minimum of 0 at x = 2 Absolute minimum of Oatx = 0
(d) (e) ®

Figure 4.13 Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of
(—o00, 00). Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a

bounded interval.

Theorem 4.1: Extreme Value Theorem

If f is a continuous function over the closed, bounded interval [a, b], then there is a point in [a, b] at which f has

an absolute maximum over [a, b] and there is a point in [a, b] at which f has an absolute minimum over [a, b].

The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis.
There are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the
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function must be continuous over a closed, bounded interval. If the interval / is open or the function has even one point
of discontinuity, the function may not have an absolute maximum or absolute minimum over /. For example, consider the

functions shown in Figure 4.13(d), (e), and (f). All three of these functions are defined over bounded intervals. However,
the function in graph (e) is the only one that has both an absolute maximum and an absolute minimum over its domain.
The extreme value theorem cannot be applied to the functions in graphs (d) and (f) because neither of these functions is
continuous over a closed, bounded interval. Although the function in graph (d) is defined over the closed interval [0, 4],

the function is discontinuous at x = 2. The function has an absolute maximum over [0, 4] but does not have an absolute
minimum. The function in graph (f) is continuous over the half-open interval [0, 2), but is not defined at x =2, and
therefore is not continuous over a closed, bounded interval. The function has an absolute minimum over [0, 2), but does
not have an absolute maximum over [0, 2). These two graphs illustrate why a function over a bounded interval may fail to
have an absolute maximum and/or absolute minimum.

Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in

determining where absolute extrema occur.

Local Extrema and Critical Points

Consider the function f shown in Figure 4.14. The graph can be described as two mountains with a valley in the middle.
The absolute maximum value of the function occurs at the higher peak, at x = 2. However, x = 0 is also a point of
interest. Although f(0) is not the largest value of f, the value f(0) is larger than f(x) forall x near 0. We say f hasa
local maximum at x = 0. Similarly, the function f does not have an absolute minimum, but it does have a local minimum

at x =1 because f(1) islessthan f(x) for x near 1.

y

f(x)

f(x) defined on (—x=, =)

Local maximaatx = 0and x = 2

Local minimum at x = 1
Figure 4.14 This function f has two local maxima and one
local minimum. The local maximum at x = 2 is also the
absolute maximum.

Definition

A function f has a local maximum at c if there exists an open interval / containing ¢ such that / is contained
in the domain of f and f(c) > f(x) forall x € I. A function f has a local minimum at ¢ if there exists an open
interval / containing ¢ such that / is contained in the domain of f and f(c) < f(x) forall x € I. A function f

has a local extremum at ¢ if f has alocal maximum at ¢ or f has alocal minimum at c.

Note that if f has an absolute extremum at ¢ and f is defined over an interval containing ¢, then f(c) is also

considered a local extremum. If an absolute extremum for a function f occurs at an endpoint, we do not consider that to be
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a local extremum, but instead refer to that as an endpoint extremum.
Given the graph of a function f, itissometimes easy to see where a local maximum or local minimum occurs. However,

it is not always easy to see, since the interesting features on the graph of a function may not be visible because they occur at
a very small scale. Also, we may not have a graph of the function. In these cases, how can we use a formula for a function
to determine where these extrema occur?

To answer this question, let’s look at Figure 4.14 again. The local extrema occurat x =0, x =1, and x = 2. Notice
thatat x =0 and x =1, the derivative f'(x) =0. At x =2, the derivative f’(x) does not exist, since the function
f has a corner there. In fact, if f has a local extremum at a point x = ¢, the derivative f’(c) must satisfy one of the
following conditions: either f'(c) = 0 or f’(c) is undefined. Such a value ¢ is known as a critical point and it is important

in finding extreme values for functions.

Definition

Let ¢ be an interior point in the domain of f. We say that ¢ is a critical point of f if f'(c) =0 or f'(c) is

undefined.

As mentioned earlier, if f has a local extremum at a point x = ¢, then ¢ must be a critical point of f. This fact is known

as Fermat’s theorem.

Theorem 4.2: Fermat’s Theorem

If f has alocal extremum at ¢ and f is differentiable at ¢, then f’(c) =0

Proof

Suppose f has a local extremum at ¢ and f is differentiable at ¢. We need to show that f’(c¢) = 0. To do this, we
will show that f'(c¢) > 0 and f’(c) <0, and therefore f'(c) =0. Since f has a local extremum at ¢, f has a local
maximum or local minimum at c¢. Suppose f has a local maximum at c. The case in which f has a local minimum
at ¢ can be handled similarly. There then exists an open interval I such that f(c) > f(x) for all x € I. Since f is

differentiable at ¢, from the definition of the derivative, we know that
i _ e SO = fo)
f'lo= xll_f}lcv~

Since this limit exists, both one-sided limits also exist and equal f’(c). Therefore,

fo= tim fOZ1© (4.9)
and
Fc) = R En;_ M (4.5)

Since f(c) is a local maximum, we see that f(x) — f(c) <0 for x near c. Therefore, for x near ¢, but x> c,
we have S0 = f© (x) f © < 0. From Equation 4.4 we conclude that f’(c¢) < 0. Similarly, it can be shown that f'(c) > 0.
Therefore, f (c) =

O

From Fermat’s theorem, we conclude that if f has a local extremum at ¢, then either f'(c) =0 or f'(c) is undefined.

In other words, local extrema can only occur at critical points.
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Note this theorem does not claim that a function f must have a local extremum at a critical point. Rather, it states that

critical points are candidates for local extrema. For example, consider the function f(x) = x>. We have f'(x) = 3x2=0

3

when x = 0. Therefore, x =0 is a critical point. However, f(x) = x” is increasing over (—oo, o0), and thus f does

not have a local extremum at x = 0. In Figure 4.15, we see several different possibilities for critical points. In some of

these cases, the functions have local extrema at critical points, whereas in other cases the functions do not. Note that these
graphs do not show all possibilities for the behavior of a function at a critical point.

y y y
f(c) =0 f'(c) is undefined f'(c) is undefined
c x c x c x
Local maximum at ¢ Local maximum at ¢ Local minimum at ¢
(@) (b) (©
y y
fc) =0 f'(c) is undefined
f
¢ x ¢ x
No local extremum at ¢ No local extremum at ¢
(d) (e)

Figure 4.15 (a—e) A function f has a critical point at ¢ if f'(c) =0 or f’(c) is undefined. A function may or may not

have a local extremum at a critical point.

Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a
critical point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine
whether a critical point is associated with a local extremum.

Example 4.12

Locating Critical Points

For each of the following functions, find all critical points. Use a graphing utility to determine whether the
function has a local extremum at each of the critical points.

a. f(x)= %x3 - %xz + 4x

b fr)=(x*- 1)3

__4x
“ f(X)_1+x2

Solution
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C.

The derivative f'(x) = x%> —5x+4 is defined for all real numbers x. Therefore, we only need to find
the values for x where f’(x) =0. Since f'(x) = xr—5x+4= (x —4)(x — 1), the critical points are
x =1 and x = 4. From the graph of f in Figure 4.16, we see that f has a local maximum at x = 1

and a local minimum at x = 4.

By

RN UL

-4+ f(x) = %x3 — %xz + 4x

Figure 4.16 This function has a local maximum and a local
minimum.

Using the chain rule, we see the derivative is
2 2
F@=3x*=1) @y =6x{x*-1) .

Therefore, f has critical points when x = 0 and when x> =1 = 0. We conclude that the critical points
are x = 0, +1. From the graph of f in Figure 4.17, we see that f has a local (and absolute) minimum

at x =0, but does not have a local extremum at x =1 or x = —1.

y
3]

21

R\ VAL
-1

_2..

Figure 4.17 This function has three critical points: x = 0,
x =1, and x = —1. The function has a local (and absolute)
minimum at x = 0, but does not have extrema at the other two
critical points.

By the chain rule, we see that the derivative is

(1+x24)—4x@0) 4 _ 42

(1422) (142)

fx) =

The derivative is defined everywhere. Therefore, we only need to find values for x where f’(x) = 0.

Solving f’(x) =0, we see that 4 — 4x> =0, which implies x = +1. Therefore, the critical points

are x = 1. From the graph of f in Figure 4.18, we see that f has an absolute maximum at x = 1

371
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and an absolute minimum at x = —1. Hence, f has a local maximum at x = 1 and a local minimum at
x = —1. (Note that if f has an absolute extremum over an interval / ata point ¢ that is not an endpoint

of I, then f has alocal extremum at c.)

y
34
_ 4x
ol = T
14
-3 -2 -1 1 2 3X
_2‘_
-3+

Figure 4.18 This function has an absolute maximum and an
absolute minimum.

@ 412 Find all critical points for f(x) = X - %xz -2x+ 1.

Locating Absolute Extrema

The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and
an absolute minimum. As shown in Figure 4.13, one or both of these absolute extrema could occur at an endpoint. If an
absolute extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute
extremum is a local extremum. Therefore, by Fermat’s Theorem, the point ¢ at which the local extremum occurs must

be a critical point. We summarize this result in the following theorem.

Theorem 4.3: Location of Absolute Extrema

Let f be a continuous function over a closed, bounded interval /. The absolute maximum of f over I and the

absolute minimum of f over / must occur at endpoints of / or at critical points of f in 1.

With this idea in mind, let’s examine a procedure for locating absolute extrema.

Problem-Solving Strategy: Locating Absolute Extrema over a Closed Interval

Consider a continuous function f defined over the closed interval [a, b].
1. Evaluate f atthe endpoints x = a and x = b.
2. Find all critical points of f that lie over the interval (a, b) and evaluate f at those critical points.

3. Compare all values found in (1) and (2). From Location of Absolute Extrema, the absolute extrema must
occur at endpoints or critical points. Therefore, the largest of these values is the absolute maximum of f. The

smallest of these values is the absolute minimum of f.
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Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous

functions.

Example 4.13

Locating Absolute Extrema

For each of the following functions, find the absolute maximum and absolute minimum over the specified interval
and state where those values occur.

f(x) = —=x>+3x =2 over [1, 3].

a.
b. f(x)= x2 = 3x%3 over [0, 2].
Solution
a. Step 1. Evaluate f at the endpoints x =1 and x = 3.

f(1)=0and f(3) = -2

Step 2. Since f'(x) = —2x+3, f’ is defined for all real numbers x. Therefore, there are no critical

points where the derivative is undefined. It remains to check where f’(x)=0. Since

ffx)=-2x+3=0 at x= % and % is in the interval [1, 3], f(%) is a candidate for an absolute

extremum of f over [1, 3]. We evaluate f(%) and find

Step 3. We set up the following table to compare the values found in steps 1 and 2.

x f(x) Conclusion

0 0

3 1 Absolute maximum
2 4

3 -2 Absolute minimum

From the table, we find that the absolute maximum of f over the interval [1, 3] is l, and it occurs at

X = % The absolute minimum of f over the interval [1, 3]is —2, and it occurs at x = 3 as shown in

the following graph.
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y
1+
by
(L0O) ~~
-1 0 1 2 3X

-1 f(xX) = —x2+ 3x — 2
-2 @3, -2)
-34

Figure 4.19 This function has both an absolute maximum and an absolute minimum.

b. Step 1. Evaluate f at the endpoints x =0 and x = 2.
£(0)=0and f(2) = 4 — 3V4 ~ —0.762

Step 2. The derivative of f is given by

oy 2 _ w2
') =2x~ RVEETE

for x # 0. The derivative is zero when 2543

—2 =0, which implies x = 1. The derivative is
undefined at x = 0. Therefore, the critical points of f are x =0, 1, —1. The point x =0 is an
endpoint, so we already evaluated f(0) in step 1. The point x = —1 is not in the interval of interest, so

we need only evaluate f(1). We find that

f()=-2.
Step 3. We compare the values found in steps 1 and 2, in the following table.
x f(x) Conclusion
0 0 Absolute maximum
1 -2 Absolute minimum
2 —0.762

We conclude that the absolute maximum of f over the interval [0, 2] is zero, and it occurs at x = 0. The

absolute minimum is -2, and it occurs at x = 1 as shown in the following graph.
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N

—34

Figure 4.20 This function has an absolute maximum at an
endpoint of the interval.

@ 4.13  Find the absolute maximum and absolute minimum of fx) = x2 = 4x+ 3 over the interval [1, 4].

At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined
local extrema and determined that if a function f has a local extremum at a point ¢, then ¢ must be a critical point of f.

However, ¢ being a critical point is not a sufficient condition for f to have a local extremum at c. Later in this chapter,

we show how to determine whether a function actually has a local extremum at a critical point. First, however, we need to
introduce the Mean Value Theorem, which will help as we analyze the behavior of the graph of a function.
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4.3 EXERCISES

90. In precalculus, you learned a formula for the position
of the maximum or minimum of a quadratic equation

y= ax? + bx + ¢, which was h= — %. Prove this

formula using calculus.

91. If you are finding an absolute minimum over an
interval [a, b], why do you need to check the endpoints?

Draw a graph that supports your hypothesis.

92. If you are examining a function over an interval
(a, b), for a and b finite, is it possible not to have an

absolute maximum or absolute minimum?

93. When you are checking for critical points, explain
why you also need to determine points where f'(x) is

undefined. Draw a graph to support your explanation.

94. Can you have a finite absolute maximum for
y= ax® + bx + ¢ over (=00, o0)? Explain why or why

not using graphical arguments.

95. Can you have a finite absolute maximum for
y= ax> +bx* +cx+d over (—o0, c0) assuming a is

non-zero? Explain why or why not using graphical
arguments.

96. Let m be the number of local minima and M be the

number of local maxima. Can you create a function where
M > m+ 27 Draw a graph to support your explanation.

97. Is it possible to have more than one absolute
maximum? Use a graphical argument to prove your
hypothesis.

98. Is it possible to have no absolute minimum or
maximum for a function? If so, construct such a function.
If not, explain why this is not possible.

99. [T] Graph the function y = e®*. For which values
of a, on any infinite domain, will you have an absolute

minimum and absolute maximum?

For the following exercises, determine where the local and
absolute maxima and minima occur on the graph given.
Assume the graph represents the entirety of each function.

Chapter 4 | Applications of Derivatives

100.

101.

102.

103.

_15 -

_2.,

For the following problems, draw graphs of f(x), which
is continuous, over the interval [—4, 4] with the following

properties:
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104. Absolute maximum at x = 2 and absolute minima at
x=43

105. Absolute minimum at x = 1 and absolute maximum
at x =2

106. Absolute maximum at x = 4, absolute minimum at
x = —1, local maximum at x = —2, and a critical point

that is not a maximum or minimum at x = 2

107. Absolute maxima at x =2 and x = -3, local

minimum at x = 1, and absolute minimum at x = 4

For the following exercises, find the critical points in the
domains of the following functions.

108. y= 4x3 = 3x
109. y=4vx — x?

110, y=—1

111. y=In(x—-2)

112. y = tan(x)
13. y=V4-x?

114. y= X2 =352

115. y=

116. y = sin*(x)
— 1
117 y=x++%

For the following exercises, find the local and/or absolute
maxima for the functions over the specified domain.

118. f(x) = x2+3 over [—1, 4]

119. y =x2+% over [1, 4]

120. y= (x—x2)2 over [—1, 1]

121. y= 1 over (0, 1)

122. y=V9 —x over [1, 9]

377

123. y = x+ sin(x) over [0, 2x]

124, y= lj‘rx

over [0, 100]
125. y=|x+ 1]+ Ix— 1] over [-3, 2]

126. y=vx— \/P over [0, 4]
127. y =sinx + cosx over [0, 2x]
128. y =4sinf — 3cosé over [0, 2x]

For the following exercises, find the local and absolute
minima and maxima for the functions over (—oo, 00).

129. y=x2+4x+5

130. y=x—12x

131. y= 3x* 4 8x3 — 18x2
132. y= x3 (1- x)6

2

2
134, y=5=1

For the following functions, use a calculator to graph the

function and to estimate the absolute and local maxima and
minima. Then, solve for them explicitly.

135. [T] y = 3xV1 — x2
136. [T] y = x + sin(x)

137. [T] y = 12x° + 45x* 4+ 20x° — 90x> — 120x + 3

3 2

139. [T] y=-4
44x

ik

140. A company that produces cell phones has a cost
function of C = x* — 1200x + 36,400, where C is cost
in dollars and x is number of cell phones produced (in

thousands). How many units of cell phone (in thousands)
minimizes this cost function?
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141. A ball is thrown into the air and its position is given
by h(f) = —4.9t> + 60t + 5m. Find the height at which

the ball stops ascending. How long after it is thrown does
this happen?

For the following exercises, consider the production of
gold during the California gold rush (1848-1888). The
(251)
(2 +16)

where ¢ is the number of years since the rush began
(0<t<40) and G is ounces of gold produced (in

production of gold can be modeled by G(f) =

millions). A summary of the data is shown in the following
figure.

4.5 5
4 4

N w
NoOwo;
TR S |

15 4

Gold (millions of troy ounces)
-
1

0.5 4
0 -

1848
1850
1852
1854
1856
1858
1860
1862
1864
1866
1868
1870
1872
1874
1876
1878
1880
1882
1884
1886
1888

Year

142. Find when the maximum (local and global) gold
production occurred, and the amount of gold produced
during that maximum.

143. Find when the minimum (local and global) gold
production occurred. What was the amount of gold
produced during this minimum?

Find the critical points, maxima, and minima for the
following piecewise functions.

ua y_{x2—4x 0<x<1
' x2—4 1<x<2

145 y_{‘x2+1 x<1
Z_4x+5x>1

For the following exercises, find the critical points of the
following generic functions. Are they maxima, minima, or

neither? State the necessary conditions.

146. y= ax® + bx +c, given that a > 0

147. y=(x—1)% giventhat ¢ > 1 and a is an integer.
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4.4 | The Mean Value Theorem

Learning Objectives

4.4.1 Explain the meaning of Rolle’s theorem.
4.4.2 Describe the significance of the Mean Value Theorem.
4.4.3 State three important consequences of the Mean Value Theorem.

The Mean Value Theorem is one of the most important theorems in calculus. We look at some of its implications at the
end of this section. First, let’s start with a special case of the Mean Value Theorem, called Rolle’s theorem.

Rolle’s Theorem

Informally, Rolle’s theorem states that if the outputs of a differentiable function f are equal at the endpoints of an interval,

then there must be an interior point ¢ where f'(c) = 0. Figure 4.21 illustrates this theorem.

y y y

f(cy) =0

f(c)=0

y=0

@ (b) ©

Figure 4.21 If a differentiable function f satisfies f(a) = f(b), then its derivative must be zero at some point(s)

between a and b.

Theorem 4.4: Rolle’s Theorem

Let f be a continuous function over the closed interval [a, b] and differentiable over the open interval (a, b) such

that f(a) = f(b). There then exists at least one ¢ € (a, b) such that f’(c) = 0.

Proof
Let k = f(a) = f(b). We consider three cases:

1. f(x)=k forall x € (a, b).
2. There exists x € (a, b) such that f(x) > k.
3. There exists x € (a, b) such that f(x) < k.
Case 1: If f(x) =k forall x € (a, b), then f'(x) =0 forall x € (a, b).

Case 2: Since f is a continuous function over the closed, bounded interval [a, b], by the extreme value theorem, it has
an absolute maximum. Also, since there is a point x € (a, b) such that f(x) > k, the absolute maximum is greater than

k. Therefore, the absolute maximum does not occur at either endpoint. As a result, the absolute maximum must occur at an
interior point ¢ € (a, b). Because f has a maximum at an interior point ¢, and f is differentiable at ¢, by Fermat’s

theorem, f'(c) = 0.
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Case 3: The case when there exists a point x € (a, b) such that f(x) < k is analogous to case 2, with maximum replaced
by minimum.

O

An important point about Rolle’s theorem is that the differentiability of the function f is critical. If f is not differentiable,
even at a single point, the result may not hold. For example, the function f(x) = |x| — 1 is continuous over [—1, 1] and

f(=1)=0=f(1), but f'(c) # 0 forany c € (—1, 1) as shown in the following figure.
y

fx)=1Ix] -1

No ¢ such that f(c) = 0
Figure 4.22 Since f(x) = |x| — 1 is not differentiable at

x =0, the conditions of Rolle’s theorem are not satisfied. In
fact, the conclusion does not hold here; there isno ¢ € (—1, 1)
such that f’(c) = 0.

Let’s now consider functions that satisfy the conditions of Rolle’s theorem and calculate explicitly the points ¢ where

f'(e)=0.

Example 4.14

Using Rolle’s Theorem

For each of the following functions, verify that the function satisfies the criteria stated in Rolle’s theorem and find
all values ¢ in the given interval where f’(c) =0.

a. f(x)= x% + 2x over [-2, 0]

b. f(x)=x>—4x over [-2, 2]

Solution
a. Since f isa polynomial, it is continuous and differentiable everywhere. In addition, f(—2) =0 = f(0).
Therefore, f satisfies the criteria of Rolle’s theorem. We conclude that there exists at least one value
ce(—2,0) such that f'(¢)=0. Since f'(x)=2x+2=2x+1), we see that
f'(c)=2(c+1) =0 implies ¢ = —1 as shown in the following graph.
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I}J'<

fx)=x2+2x 11

Figure 4.23 This function is continuous and differentiable
over [—2, 0], f'(c) =0 when ¢ =—1.

b. As in part a. f is a polynomial and therefore is continuous and differentiable everywhere. Also,
f(=2) =0 = f(2). That said, f satisfies the criteria of Rolle’s theorem. Differentiating, we find that
f'x) = 3x2—4. Therefore, f'(c) =0 when x = + 2

. Both points are in the interval [—2, 2], and,
3 p

therefore, both points satisfy the conclusion of Rolle’s theorem as shown in the following graph.

y
f(x) = x3 — 4x
_______________ Y T ————
21
1+
-2 -1 0 1 X
-1+
—24
________________ T SRS Y £ e

Figure 4.24 For this polynomial over [-2, 2], f'(c) =0
at x = +2/V3.

4.14 Verify that the function f(x) = 2x% — 8x + 6 defined over the interval [1, 3] satisfies the conditions of
Rolle’s theorem. Find all points ¢ guaranteed by Rolle’s theorem.

381
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The Mean Value Theorem and Its Meaning

Rolle’s theorem is a special case of the Mean Value Theorem. In Rolle’s theorem, we consider differentiable functions f
defined on a closed interval [a, b] with f(a) = f(b). The Mean Value Theorem generalizes Rolle’s theorem by considering

functions that do not necessarily have equal value at the endpoints. Consequently, we can view the Mean Value Theorem
as a slanted version of Rolle’s theorem (Figure 4.25). The Mean Value Theorem states that if f is continuous over the

closed interval [a, b] and differentiable over the open interval (a, b), then there exists a point ¢ € (a, b) such that the

tangent line to the graph of f at c¢ is parallel to the secant line connecting (a, f(a)) and (b, f(b)).

y
Slope of Slope of tangent line is f(c,)
secant line is
f(b) — f(a) ™~ /
b-a .
s y = f(x)
(o) \
f(a) +
a ¢ \ ¢, b X

Slope of tangent line is f(c,)

Figure 4.25 The Mean Value Theorem says that for a function
that meets its conditions, at some point the tangent line has the
same slope as the secant line between the ends. For this
function, there are two values ¢ and ¢, such that the tangent

lineto f at ¢ and ¢, has the same slope as the secant line.

Theorem 4.5: Mean Value Theorem

Let f be continuous over the closed interval [a, b] and differentiable over the open interval (a, ). Then, there

exists at least one point ¢ € (a, b) such that

Proof

The proof follows from Rolle’s theorem by introducing an appropriate function that satisfies the criteria of Rolle’s theorem.
Consider the line connecting (a, f(a)) and (b, f(b)). Since the slope of that line is

Jf) — f(a)

b—a
and the line passes through the point (@, f(a)), the equation of that line can be written as
b)— f(a
y=O=TO 4+ f@.

Let g(x) denote the vertical difference between the point (x, f(x)) and the point (x, y) on that line. Therefore,

g = 1) = [ L =Ly 4 p(w |
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Figure 4.26 The value g(x) is the vertical difference
between the point (x, f(x)) and the point (x, y) on the secant
line connecting (a, f(a)) and (b, f(b)).

Since the graph of f intersects the secant line when x =a and x =b, we see that g(a) =0 = g(b). Since f is a
differentiable function over (a, b), g is also a differentiable function over (a, b). Furthermore, since f is continuous
over [a, b], g is also continuous over [a, b]. Therefore, g satisfies the criteria of Rolle’s theorem. Consequently, there

exists a point ¢ € (a, b) such that g’(c) = 0. Since

we see that
g = fie) - LO =L@,
Since g’(c) =0, we conclude that

O
In the next example, we show how the Mean Value Theorem can be applied to the function f(x) = vx over the interval

[0, 9]. The method is the same for other functions, although sometimes with more interesting consequences.

Example 4.15

Verifying that the Mean Value Theorem Applies

For f(x) = vx over the interval [0, 9], show that f satisfies the hypothesis of the Mean Value Theorem, and
therefore there exists at least one value ¢ € (0, 9) such that f’(c) is equal to the slope of the line connecting
(0, f(0)) and (9, £(9)). Find these values ¢ guaranteed by the Mean Value Theorem.

Solution

We know that f(x) = vx is continuous over [0, 9] and differentiable over (0, 9). Therefore, f satisfies the
hypotheses of the Mean Value Theorem, and there must exist at least one value ¢ € (0, 9) such that f'(c) is
equal to the slope of the line connecting (0, f(0)) and (9, f(9)) (Figure 4.27). To determine which value(s)
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of ¢ are guaranteed, first calculate the derivative of f. The derivative f'(x) = The slope of the line

(ZW
connecting (0, f(0)) and (9, f(9)) is given by

fO) = FO) _yo -1 _

9-0 9-0 93
We want to find ¢ such that f’(c) = %. That is, we want to find ¢ such that
1 _1
2v¢ 3

At this point, the slope of the tangent line equals the slope of the

Solving this equation for ¢, we obtain ¢ = %

line joining the endpoints.
y

34

0 1 2 3 4 5 6 7 8 9 10X

_2..

Figure 4.27 The slope of the tangent line at ¢ = 9/4 is the same as the slope of the line segment
connecting (0, 0) and (9, 3).

One application that helps illustrate the Mean Value Theorem involves velocity. For example, suppose we drive a car for
1 h down a straight road with an average velocity of 45 mph. Let s(#) and v(f) denote the position and velocity of the

car, respectively, for 0 <7 < 1 h. Assuming that the position function s(¢) is differentiable, we can apply the Mean Value

Theorem to conclude that, at some time ¢ € (0, 1), the speed of the car was exactly

We) =5 (¢) = S(l) S(O) — 45 mph.

Example 4.16

Mean Value Theorem and Velocity

If a rock is dropped from a height of 100 ft, its position ¢ seconds after it is dropped until it hits the ground is
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given by the function s(r) = —16¢2 + 100.

a. Determine how long it takes before the rock hits the ground.

b. Find the average velocity v,y of the rock for when the rock is released and the rock hits the ground.

c. Find the time ¢ guaranteed by the Mean Value Theorem when the instantaneous velocity of the rock is
Vavg-

Solution

a. When the rock hits the ground, its position is s(#) = 0. Solving the equation —16t>+100 = 0 for t,
we find that ¢ = i% sec. Since we are only considering # > 0, the ball will hit the ground % sec after
it is dropped.

b. The average velocity is given by

_356/2)-s50) _0-100 _ _
Vae =T 550 = 52 = 40 ft/sec.

c. The instantaneous velocity is given by the derivative of the position function. Therefore, we need to find

atime ¢ such that v(#) = s'(t) = vayg = —40ft/sec. Since s() is continuous over the interval [0, 5/2]

and differentiable over the interval (0, 5/2), by the Mean Value Theorem, there is guaranteed to be a
point ¢ € (0, 5/2) such that

5(5/2) = s0) _ _

5/2-0 40.

s'(c) =

Taking the derivative of the position function s(z), we find that s’ (f) = —32¢. Therefore, the equation

reduces to s’ (¢) = —32¢ = —40. Solving this equation for ¢, we have ¢ = % Therefore, % sec after

the rock is dropped, the instantaneous velocity equals the average velocity of the rock during its free fall:
—40 ft/sec.

Yy
100+

80+
60+ N

1
1
1

N,
N

401
20}

)
|
1
|
1
]
:
0 15
_20..
Figure 4.28 Attime t = 5/4 sec, the velocity of the rock is

equal to its average velocity from the time it is dropped until it
hits the ground.
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v/ 4.15  Suppose a ball is dropped from a height of 200 ft. Its position at time ¢ is s(f) = —16¢% +200. Find the

time ¢ when the instantaneous velocity of the ball equals its average velocity.
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Corollaries of the Mean Value Theorem

Let’s now look at three corollaries of the Mean Value Theorem. These results have important consequences, which we use
in upcoming sections.

At this point, we know the derivative of any constant function is zero. The Mean Value Theorem allows us to conclude
that the converse is also true. In particular, if f’(x) =0 for all x in some interval /, then f(x) is constant over that

interval. This result may seem intuitively obvious, but it has important implications that are not obvious, and we discuss
them shortly.

Theorem 4.6: Corollary 1: Functions with a Derivative of Zero

Let f be differentiable over an interval /. If f'(x) =0 forall x € I, then f(x) = constant forall x € I.

Proof
Since f is differentiable over I, f must be continuous over /. Suppose f(x) is not constant for all x in /. Then there

exist a, b € I, where a # b and f(a) # f(b). Choose the notation so that a < b. Therefore,

GENIGIN

Since f is a differentiable function, by the Mean Value Theorem, there exists ¢ € (a, b) such that

==t

Therefore, there exists ¢ € I suchthat f'(c) # 0, which contradicts the assumption that f’ (x) = 0 forall x € I.

O

From Corollary 1: Functions with a Derivative of Zero, it follows that if two functions have the same derivative,
they differ by, at most, a constant.

Theorem 4.7: Corollary 2: Constant Difference Theorem

If f and g are differentiable over an interval / and f’(x) = g’ (x) forall x € I, then f(x) = g(x)+ C for some

constant C.

Proof
Let h(x) = f(x) — g(x). Then, i’ (x) = f'(x) — g’ (x) = 0 for all x € I. By Corollary 1, there is a constant C such that
h(x) = C forall x € I. Therefore, f(x) = g(x)+ C forall x € 1.

O

The third corollary of the Mean Value Theorem discusses when a function is increasing and when it is decreasing. Recall
that a function f is increasing over I if f(x;) < f(x,) whenever x; <x,, whereas f is decreasing over [ if

x)1 > f(x,) whenever x; < x,. Using the Mean Value Theorem, we can show that if the derivative of a function is
1 2 1 2 g

positive, then the function is increasing; if the derivative is negative, then the function is decreasing (Figure 4.29). We
make use of this fact in the next section, where we show how to use the derivative of a function to locate local maximum
and minimum values of the function, and how to determine the shape of the graph.

This fact is important because it means that for a given function f, if there exists a function F such that F’ (x) = f(x);
then, the only other functions that have a derivative equal to f are F(x)+ C for some constant C. We discuss this result

in more detail later in the chapter.
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e

fis increasing fis decreasing fis increasing
Figure 4.29 If a function has a positive derivative over some interval I, then the function

[TYE Ry I ——
o T iy ——

increases over that interval I; if the derivative is negative over some interval /, then the

function decreases over that interval /.

Theorem 4.8: Corollary 3: Increasing and Decreasing Functions

387

Let f be continuous over the closed interval [a, b] and differentiable over the open interval (a, b).
i. If f'(x)> 0 forall x € (a, b), then f is an increasing function over [a, b].

i. If f'(x) <0 forall x € (a, b), then f is a decreasing function over [a, b].

Proof

We will prove i.; the proof of ii. is similar. Suppose f is not an increasing function on /. Then there exist @ and b in [

such that @ < b, but f(a) > f(b). Since f is a differentiable function over /, by the Mean Value Theorem there exists

¢ € (a, b) such that

f/ (C) — f(bli _f(a).

—a

Since f(a) > f(b), we know that f(b) — f(a) <0. Also, a < b tells us that b —a > 0. We conclude that

oy JB) = fl@
f (C)—ﬁﬁo-

However, f’(x) > 0 forall x € I. This is a contradiction, and therefore f must be an increasing function over I.

O
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4.4 EXERCISES

148. Why do you need continuity to apply the Mean Value
Theorem? Construct a counterexample.

149. Why do you need differentiability to apply the Mean
Value Theorem? Find a counterexample.

150. When are Rolle’s theorem and the Mean Value
Theorem equivalent?

151. If you have a function with a discontinuity, is it still
possible to have f'(c)(b —a) = f(b) — f(a)? Draw such

an example or prove why not.
For the following exercises, determine over what intervals
(if any) the Mean Value Theorem applies. Justify your

answer.

152. y = sin(zx)

153, y=-L

154. y=\4—x>

155. y=\x2-4
156. y=In(3x-95)

For the following exercises, graph the functions on a
calculator and draw the secant line that connects the
endpoints. Estimate the number of points ¢ such that

(b —a)= f(b) - f@).

157. [Tl y = 303 +2x+ 1 over [—1, 1]

158. [T] y = tan(%x) over [—%, %]

159. [T] y = x%cos(zx) over [-2, 2]

160. [T]

y=x6—%x5—%x4+%x3+3%x2+13—6x+3l2 over

[-1, 1]

For the following exercises, use the Mean Value Theorem
and find all points O0<c<2 such that
f@) = fO) = f (2 -0).

161, f(x) =«

162. f(x) = sin(zx)

Chapter 4 | Applications of Derivatives

163. f(x) = cos(27x)
164. f()=1+x+x>
165. f(x)=(x—1"°
166. f(x)=@x—-1)°

For the following exercises, show there is no ¢ such that
f() — f(=1) = f'(c)(2). Explain why the Mean Value

Theorem does not apply over the interval [—1, 1].
"
167. f(x) = |x !
168. f(x) =L
X

169.  f(x) = ixl

170. f(x) = |x]| (Hint: This is called the floor function
and it is defined so that f(x) is the largest integer less than
or equal to x.)

For the following exercises, determine whether the Mean
Value Theorem applies for the functions over the given

interval [a, b]. Justify your answer.

171. y=e" over [0, 1]
172. y =In(2x + 3) over [—%, 0]
173.  f(x) = tan(2zx) over [0, 2]

174. y=19 — x% over [-3, 3]

175. y= 1 over [0, 3]

176. y=x>+2x+ 1 over [0, 6]

2
177. y=% over [—1, 1]

178. 'y over [0, 1]

_ X
sin(zx) + 1
179. y=In(x+ 1) over [0, e — 1]

180. y = xsin(zx) over [0, 2]
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181. y =5+ x| over [-1, 1]

For the following exercises, consider the roots of the
equation.

182. Show that the equation y = x> +3x2416 has

exactly one real root. What is it?

183. Find the conditions for exactly one root (double root)

for the equation y = x>+ bx+c

184. Find the conditions for y = ¢* — b to have one root.

Is it possible to have more than one root?

For the following exercises, use a calculator to graph the
function over the interval [a, b] and graph the secant line

from a to b. Use the calculator to estimate all values of ¢

as guaranteed by the Mean Value Theorem. Then, find the
exact value of ¢, if possible, or write the final equation

and use a calculator to estimate to four digits.

185. [T] y = tan(xx) over [—%, %]

186. [T] y = W/x{l-il over [0, 3]

187. [Tl y = |x2 +2x— 4| over [—4, 0]

188. [T] y=x +% over [%, 4]

189. [Tl y=Vx+1 +L2 over [3, 8]
X

190. At 10:17 a.m., you pass a police car at 55 mph that
is stopped on the freeway. You pass a second police car at
55 mph at 10:53 a.m., which is located 39 mi from the first
police car. If the speed limit is 60 mph, can the police cite
you for speeding?

191. Two cars drive from one spotlight to the next, leaving
at the same time and arriving at the same time. Is there
ever a time when they are going the same speed? Prove or
disprove.

192. Show that y = sec?x and y= tan”x have the same

2

derivative. What can you say about y = sec”x — tan?x?

2x and y= cot?x have the same

2

193. Show that y = csc

derivative. What can you say about y = csc“x — cot?x?

389
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4.5 | Derivatives and the Shape of a Graph

Learning Objectives

4.5.1 Explain how the sign of the first derivative affects the shape of a function’s graph.
4.5.2 State the first derivative test for critical points.

4.5.3 Use concavity and inflection points to explain how the sign of the second derivative affects
the shape of a function’s graph.

4.5.4 Explain the concavity test for a function over an open interval.
4.5.5 Explain the relationship between a function and its first and second derivatives.
4.5.6 State the second derivative test for local extrema.

Earlier in this chapter we stated that if a function f has a local extremum at a point ¢, then ¢ must be a critical point
of f. However, a function is not guaranteed to have a local extremum at a critical point. For example, f(x) = x> has a

critical point at x =0 since f’'(x) = 3x% iszeroat x =0, but f does not have a local extremum at x = 0. Using the

results from the previous section, we are now able to determine whether a critical point of a function actually corresponds
to a local extreme value. In this section, we also see how the second derivative provides information about the shape of a
graph by describing whether the graph of a function curves upward or curves downward.

The First Derivative Test

Corollary 3 of the Mean Value Theorem showed that if the derivative of a function is positive over an interval / then the
function is increasing over /. On the other hand, if the derivative of the function is negative over an interval I, then the

function is decreasing over I as shown in the following figure.

y y
! f=0
>0 /
/ f'=0
f'>0
a b X a b X
fis increasing fis increasing
@ (b)
y y
f'<0
\ f'<0
f'<0 \
f'<0
a b X a b X
fis decreasing fis decreasing
(© (d)

Figure 4.30 Both functions are increasing over the interval
(a, b). Ateach point x, the derivative f'(x) > 0. Both

functions are decreasing over the interval (a, b). At each point

x, the derivative f’(x) < 0.
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A continuous function f has a local maximum at point ¢ if and only if f switches from increasing to decreasing at
point c¢. Similarly, f has a local minimum at ¢ if and only if f switches from decreasing to increasing at c. If f isa
continuous function over an interval / containing ¢ and differentiable over I, except possibly at ¢, the only way f
can switch from increasing to decreasing (or vice versa) at point ¢ is if f’ changes sign as x increases through c. If
f is differentiable at ¢, the only way that f’. can change sign as x increases through c is if f’(c) = 0. Therefore,
for a function f that is continuous over an interval / containing ¢ and differentiable over I, except possibly at ¢, the
only way f can switch from increasing to decreasing (or vice versa) is if f'(c) =0 or f’(c) is undefined. Consequently,
to locate local extrema for a function f, we look for points ¢ in the domain of f such that f'(c) =0 or f'(c) is

undefined. Recall that such points are called critical points of f.

Note that f need not have a local extrema at a critical point. The critical points are candidates for local extrema only. In
Figure 4.31, we show that if a continuous function f has a local extremum, it must occur at a critical point, but a function
may not have a local extremum at a critical point. We show that if f has a local extremum at a critical point, then the sign

of f' switches as x increases through that point.

Y

f'(@) is |
undefined |
! f(b) = 0 i :
f'=0 ! f'<0 -= - 1 :
: ) =0 : "

E a E b E c d E #

increasing decreasing increasing increasing decreasing

Figure 4.31 The function f has four critical points: a, b, ¢, and d. The function f has local maxima at a
and d, and alocal minimum at b. The function f does not have a local extremum at c. The sign of f’

changes at all local extrema.

Using Figure 4.31, we summarize the main results regarding local extrema.

 If a continuous function f has a local extremum, it must occur at a critical point c.

¢ The function has a local extremum at the critical point ¢ if and only if the derivative f’ switches sign as x

increases through c.

¢ Therefore, to test whether a function has a local extremum at a critical point ¢, we must determine the sign of
f'(x) to the left and right of c.

This result is known as the first derivative test.
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Theorem 4.9: First Derivative Test

Suppose that f is a continuous function over an interval / containing a critical point c. If f is differentiable over

I, except possibly at point ¢, then f(c) satisfies one of the following descriptions:
i. If f' changes sign from positive when x < ¢ to negative when x > ¢, then f(c) is alocal maximum of f.
ii. If f’ changes sign from negative when x < ¢ to positive when x > ¢, then f(c) is a local minimum of f.

iii. If f’ has the same sign for x < ¢ and x > ¢, then f(c) is neither a local maximum nor a local minimum of

f.

We can summarize the first derivative test as a strategy for locating local extrema.

Problem-Solving Strategy: Using the First Derivative Test

Consider a function f that is continuous over an interval 1.
1. Find all critical points of f and divide the interval / into smaller intervals using the critical points as
endpoints.
2. Analyze the sign of f’ in each of the subintervals. If f’ is continuous over a given subinterval (which is
typically the case), then the sign of f’ in that subinterval does not change and, therefore, can be determined
by choosing an arbitrary test point x in that subinterval and by evaluating the sign of f’ at that test point. Use

the sign analysis to determine whether f is increasing or decreasing over that interval.

3. Use First Derivative Test and the results of step 2 to determine whether f has a local maximum, a local

minimum, or neither at each of the critical points.

Now let’s look at how to use this strategy to locate all local extrema for particular functions.

Example 4.17

Using the First Derivative Test to Find Local Extrema

Use the first derivative test to find the location of all local extrema for f(x) = 3 =3x2—9x—1. Use a

graphing utility to confirm your results.

Solution

Step 1. The derivative is f'(x) = 3x2 — 6x — 9. To find the critical points, we need to find where f’(x) = 0.

Factoring the polynomial, we conclude that the critical points must satisfy
3(x? = 2x=3)=3(x—3)(x+ 1) = 0.

Therefore, the critical points are x = 3, —1. Now divide the interval (—oo0, c0) into the smaller intervals
(=00, —1), (~1, 3)and (3, o).

Step 2. Since f” is a continuous function, to determine the sign of f’(x) over each subinterval, it suffices to

choose a point over each of the intervals (—oo0, —1), (=1, 3) and (3, c0) and determine the sign of f’ at each
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of these points. For example, let’s choose x = —2, x =0, and x = 4 as test points.

Interval Test Point Sign of f’(x) =3(x —3)(x +1) at Test Point Conclusion

(=00, —1) x=-2 B =+ f is increasing.
(=1, 3) x=0 H)(=)H+) = - f is decreasing.
(3, o) x=4 HH)H) = + f is increasing.

Step 3. Since f’ switches sign from positive to negative as x increases through 1, f has a local maximum at

x = —1. Since f’ switches sign from negative to positive as x increases through 3, f has a local minimum at

x = 3. These analytical results agree with the following graph.

107

fix) =x3—3x2—9x—1

~10+

—124

~14+

-164+

-18+

-204+

—224

—-24 1

—26+

-284

Figure 4.32 The function f has a maximum at x = —1 and

aminimum at x = 3
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@ 4.16  Use the first derivative test to locate all local extrema for flx) = -3+ %xz + 18x.

Example 4.18

Using the First Derivative Test

Use the first derivative test to find the location of all local extrema for f(x) = 5x13 - x93, Use a graphing

utility to confirm your results.

Solution
Step 1. The derivative is

4/3
=S 5on_ 5 5P _5-5c8 5(1 - %)
3 3 3x2/3 3 3x2/3 3x2/3

The derivative f'(x) =0 when 1— =0, Therefore, f'(x) =0 at x = =+1. The derivative f’'(x) is
undefined at x = 0. Therefore, we have three critical points: x =0, x=1, and x = —1. Consequently,

divide the interval (—oo, oo) into the smaller intervals (—oo, —1), (=1, 0), (0, 1), and (1, o0).

Step 2: Since f’ is continuous over each subinterval, it suffices to choose a test point x in each of the
intervals from step 1 and determine the sign of f’ at each of these points. The points
1 1

x==-2,x= — »X=7 and x = 2 are test points for these intervals.
Interval Test Point ( — 43 Conclusion
Sign of f'(x) = T at Test Point
(=00, —1) x==2 B f is decreasing.
=
(-1, 0) = -1 (H)(+) _ f is increasing.
2 B
©, 1 =41 (H)(+) _ f is increasing.
2 B
(1, o) x=2 HE) f is decreasing.
=

Step 3: Since f is decreasing over the interval (—oco, —1) and increasing over the interval (—1, 0), f hasa
local minimum at x = —1. Since f is increasing over the interval (—1, 0) and the interval (0, 1), f doesnot
have a local extremum at x = 0. Since f is increasing over the interval (0, 1) and decreasing over the interval

(1, o0), f has a local maximum at x = 1. The analytical results agree with the following graph.
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o

f(X) 5X1/3 — X583

—-64

Figure 4.33 The function f has a local minimum at x = —1

and a local maximum at x = 1.

@ 417 Use the first derivative test to find all local extrema for flx) = 3\/x -1

Concavity and Points of Inflection

We now know how to determine where a function is increasing or decreasing. However, there is another issue to consider
regarding the shape of the graph of a function. If the graph curves, does it curve upward or curve downward? This notion is
called the concavity of the function.

Figure 4.34(a) shows a function f with a graph that curves upward. As x increases, the slope of the tangent line
increases. Thus, since the derivative increases as x increases, f’ is an increasing function. We say this function f is
concave up. Figure 4.34(b) shows a function f that curves downward. As x increases, the slope of the tangent line
decreases. Since the derivative decreases as x increases, f’ is a decreasing function. We say this function f is concave

down.

Definition

Let f be a function that is differentiable over an open interval /. If f’ is increasing over I, we say f is concave

up over I. If f’ is decreasing over I, we say f is concave down over /.



396 Chapter 4 | Applications of Derivatives

f'is increasing f'is decreasing
fis concave up fis concave down

@) (b)

f'is increasing
fis concave up

f'is decreasing
fis concave down

© (d)

Figure 4.34 (a), (c) Since f” is increasing over the interval (a, b), wesay f
is concave up over (a, b). (b), (d) Since f” is decreasing over the interval

(a, b), wesay f isconcave down over (a, b).

In general, without having the graph of a function f, how can we determine its concavity? By definition, a function f is
concave up if f’ is increasing. From Corollary 3, we know that if f” is a differentiable function, then f’ is increasing
if its derivative f”(x) > 0. Therefore, a function f that is twice differentiable is concave up when f”(x) > 0. Similarly,
a function f is concave down if f’ is decreasing. We know that a differentiable function f’ is decreasing if its derivative
f"(x) < 0. Therefore, a twice-differentiable function f is concave down when f”(x) < 0. Applying this logic is known

as the concavity test.

Theorem 4.10: Test for Concavity

Let f be a function that is twice differentiable over an interval /.
i. If f"(x)>0 forall x €I, then f isconcave up over .

i. If f"(x) <0 forall x €/, then f is concave down over /.

We conclude that we can determine the concavity of a function f by looking at the second derivative of f. In addition, we
observe that a function f can switch concavity (Figure 4.35). However, a continuous function can switch concavity only
atapoint x if f"(x) =0 or f”(x) is undefined. Consequently, to determine the intervals where a function f is concave

up and concave down, we look for those values of x where f”(x) =0 or f”(x) is undefined. When we have determined
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these points, we divide the domain of f into smaller intervals and determine the sign of f” over each of these smaller
intervals. If f” changes sign as we pass through a point x, then f changes concavity. It is important to remember that a
function f may not change concavity at a point x even if f”(x) =0 or f”(x) is undefined. If, however, f does change

concavity at a point @ and f is continuous at @, we say the point (a, f(a)) is an inflection point of f.

Definition

If f is continuous at @ and f changes concavity at a, the point (@, f(«)) is an inflection point of f.

inflection point

(a, f(2))

a X

f'’>=0
f'<0

f'<0

f"=0 f">0 f'<0

1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
f<0 | >0

(
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Slope increasing Slope decreasing
Figure 4.35 Since f"(x) > 0 for x < a, the function f is concave up over the interval
(=00, a). Since f"(x) <0 for x > a, the function f is concave down over the interval

(a, o0). The point (@, f(a)) is an inflection point of f.

Example 4.19

Testing for Concavity

For the function f(x) = x> —6x% +9x + 30, determine all intervals where f is concave up and all intervals

where f is concave down. List all inflection points for f. Use a graphing utility to confirm your results.

Solution

To determine concavity, we need to find the second derivative f”(x). The first derivative is

flx) = 3x2— 12x + 9, so the second derivative is f”(x) = 6x — 12. If the function changes concavity, it
occurs either when f”(x) =0 or f”(x) is undefined. Since f” is defined for all real numbers x, we need only
find where f”(x) = 0. Solving the equation 6x — 12 =0, we see that x = 2 is the only place where f could
change concavity. We now test points over the intervals (—oo, 2) and (2, oo0) to determine the concavity of f.

The points x = 0 and x = 3 are test points for these intervals.
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Interval Test Point Sign of f"(x) = 6x — 12 at Test Point Conclusion

(=00, 2) x=0 - f is concave down

(2, o0) x=3 + f is concave up.

We conclude that f is concave down over the interval (—oo0, 2) and concave up over the interval (2, o). Since
f changes concavity at x =2, the point (2, f(2))= (2, 32) is an inflection point. Figure 4.36 confirms the

analytical results.

3571 (2, 32)

f(x) = x® — 6x2 + 9x + 30

-54

Figure 4.36 The given function has a point of inflection at
(2, 32) where the graph changes concavity.

@ 4.18 o fx) = -+ %x2 + 18x, find all intervals where f is concave up and all intervals where f is

concave down.

We now summarize, in Table 4.1, the information that the first and second derivatives of a function f provide about the

graph of f, and illustrate this information in Figure 4.37.
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Sign of f’ Sign of f” Is f increasing or decreasing? Concavity
Positive Positive Increasing Concave up
Positive Negative Increasing Concave down
Negative Positive Decreasing Concave up
Negative Negative Decreasing Concave down

Table 4.1 What Derivatives Tell Us about Graphs

f'<0
f">0

>0
f">=0

=0
f"<0

f'<0
f'<0

fis decreasing
fis concave up

fis increasing
fis concave up

fis increasing
fis concave down

fis increasing
fis concave down

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
1
1
1

Figure 4.37 Consider a twice-differentiable function f over an open interval /. If f'(x) > O forall x € I, the
function is increasing over 1. If f'(x) < O forall x € I, the function is decreasing over /. If f"(x) > 0 forall

x €1, the function is concave up. If f”(x) < 0 forall x € I, the function is concave down on 1.

The Second Derivative Test

The first derivative test provides an analytical tool for finding local extrema, but the second derivative can also be used to
locate extreme values. Using the second derivative can sometimes be a simpler method than using the first derivative.

We know that if a continuous function has a local extrema, it must occur at a critical point. However, a function need not
have a local extrema at a critical point. Here we examine how the second derivative test can be used to determine whether
a function has a local extremum at a critical point. Let f be a twice-differentiable function such that f’(a) =0 and f”

is continuous over an open interval / containing a. Suppose f”(a) < 0. Since f” is continuous over I, f”(x) <0 for
all x € I (Figure 4.38). Then, by Corollary 3, f” is a decreasing function over /. Since f’(a) =0, we conclude that
forall xe I, f'(x) >0 if x <a and f'(x) <0 if x > a. Therefore, by the first derivative test, f has a local maximum
at x = a. On the other hand, suppose there exists a point b such that f’(b) =0 but f”(b) > 0. Since f” is continuous
over an open interval / containing b, then f”(x) >0 for all x € (Figure 4.38). Then, by Corollary 3, f’ is an
increasing function over /. Since f’(b) =0, we conclude that forall xel, f'(x)<0 if x<b and f’'(x)> 0 if

x > b. Therefore, by the first derivative test, f has a local minimum at x = b.
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f(a)=0

fb)=0
f'(b) > 0
a b x

Figure 4.38 Consider a twice-differentiable function f such
that f” is continuous. Since f'(a) =0 and f"(a) <0,

there is an interval / containing a such that forall x in I, f
is increasing if x < a@ and f is decreasing if x > a. Asa
result, f has alocal maximum at x = a. Since f'(b) =0
and f"(b) > 0, thereis an interval / containing b such that
forall x in I, f isdecreasingif x < b and f isincreasing

if x> b. Asaresult, f has alocal minimum at x = b.

Theorem 4.11: Second Derivative Test

Suppose f'(c) =0, f” is continuous over an interval containing c.
i. If f"(c) >0, then f has alocal minimum at c.
i. If f"(c) <0, then f has alocal maximum at c.

iii. If f”(c) =0, then the test is inconclusive.

Note that for case iii. when f”(c) =0, then f may have a local maximum, local minimum, or neither at c¢. For
example, the functions f(x) = x3, fx) = x4, and f(x) = —x* all have critical points at x = 0. In each case, the
second derivative is zero at x = 0. However, the function f(x) = x* has a local minimum at x = 0 whereas the function

fx) = —x* has a local maximum at x, and the function f(x) = x> does not have a local extremum at x = 0.

Let’s now look at how to use the second derivative test to determine whether f has a local maximum or local minimum at

a critical point ¢ where f’(c) =0.

Example 4.20

Using the Second Derivative Test
Use the second derivative to find the location of all local extrema for f(x) = x =553,

Solution

To apply the second derivative test, we first need to find critical points ¢ where f’(c) =0. The derivative is
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fx)= 5x% — 15x2. Therefore, f'(x) = 5x* = 15x% = 5x2 (x2 - 3) =0 when x =0, +3.

To determine whether f has a local extrema at any of these points, we need to evaluate the sign of f” at these

points. The second derivative is

£7(x) = 20x> = 30x = 10x(2x% - 3).

In the following table, we evaluate the second derivative at each of the critical points and use the second
derivative test to determine whether f has a local maximum or local minimum at any of these points.

x f(x) Conclusion
3 —30V3 Local maximum
0 0 Second derivative test is inconclusive
V3 3013 Local minimum
By the second derivative test, we conclude that f has a local maximum at x = —3 and f has a local minimum

at x = V3. The second derivative test is inconclusive at x = 0. To determine whether f has a local extrema at
x =0, we apply the first derivative test. To evaluate the sign of f'(x) = 5x2(x2 — 3) for x € (—W/§, 0) and
x€e (0, \/5), let x=—1 and x =1 be the two test points. Since f'(—1) <0 and f’(1) <0, we conclude
that f is decreasing on both intervals and, therefore, f does not have a local extrema at x = 0 as shown in the

following graph.
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f(x) = x> — 5x°

-3

Figure 4.39 The function f has a local maximum at x = —V3 and a local minimum at x = V3

@ 419 Consider the function fx) = x> = (%)xz — 18x. The points ¢ =3, —2 satisfy f’(c) =0. Use the

second derivative test to determine whether f has a local maximum or local minimum at those points.

We have now developed the tools we need to determine where a function is increasing and decreasing, as well as acquired
an understanding of the basic shape of the graph. In the next section we discuss what happens to a function as x — +co.

At that point, we have enough tools to provide accurate graphs of a large variety of functions.
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4.5 EXERCISES

194. If c is a critical point of f(x), when is there no

local maximum or minimum at ¢? Explain.

195. For the function y=x3, is x=0 both an

inflection point and a local maximum/minimum?

196. For the function y = x%, is x=0 an inflection

point?

197. Is it possible for a point ¢ to be both an inflection

point and a local extrema of a twice differentiable
function?

198. Why do you need continuity for the first derivative
test? Come up with an example.

199. Explain whether a concave-down function has to
cross y = 0 for some value of x.

200. Explain whether a polynomial of degree 2 can have
an inflection point.

For the following exercises, analyze the graphs of f’,

then list all intervals where f is increasing or decreasing.

201.

202.

o<

203.

<

f'(x)

204.

o X

f'(x)

=t

2 X

403
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205. 2009.
{ y
i 24 F(x)
f'(x)/\o's"/\ 15
— ! — ! 3 ! % 1t
-0.5¢ 0.5+
-1t + + t + + +
-15 -1 -05 05 1 15%
-15¢ 0.5+
21 -1+
_1.5“
For the following exercises, analyze the graphs of f’,
then list all intervals where B
a. f isincreasing and decreasing and 210
b. the minima and maxima are located. }é F(x)
206. 157
it "
o0 M 051
X
A ! T i ; t /\ i Y i
-2 “1-05 0 o5 1% -15 /1 -05 0| o5 1 15%
-11 ~05+
—24 -1
_1.5"
207.
—2l
For the following exercises, analyze the graphs of f”,
then list all inflection points and intervals f that are
concave up and concave down.
211.
5
JL)
1+
208.
-1-05 9 o5 1%
1+
24
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212.

213.

214.

y
2+

|})‘<

f(x)

-15-1-45 0| 05 1 15%
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215.
y
21 F(x)
-2 1 0 1 2X
-1+
—24

For the following exercises, draw a graph that satisfies
the given specifications for the domain x = [-3, 3]. The

function does not have to be continuous or differentiable.

216. fx)>0, f"(x)>0 over
x>1,-3<x<0, ff(xX)=0over 0<x<1

217.  f'(x)>0 over x>2,-3<x<-1, f'(x) <0
over —1 <x <2, f"(x) <0 forall x

218. f'(x) <0 over
—-1l<x<1, ff(x) >0, 3<x<-1,1<x<3

local maximum at x = 0, local minima at x = +2

219. There is a local maximum at x = 2, local minimum
at x = 1, and the graph is neither concave up nor concave

down.

220. There are local maxima at x = +1, the function is
concave up for all x, and the function remains positive for

all x.

For the following exercises, determine

a. intervals where f is increasing or decreasing and

b. local minima and maxima of f.
221. f(x) =sinx + sin’x over -t <x<nm

222, f(x) = x% + cosx

For the following exercises, determine a. intervals where f

is concave up or concave down, and b. the inflection points

of f.

223, f) =x>—4x?+x+2
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For the following exercises, determine

a. intervals where f is increasing or decreasing,
b. local minima and maxima of f,

c. intervals where f is concave up and concave
down, and

d. the inflection points of f.
224. f(x) =x%—6x
225. f(x) = x> — 6x2
226. f(x)=x*—6x3

227. f(x)=x"1-6x10

228. f(x)=x+ x2=x3

229. f(x) = 2 +x+1
230. f(x)=x>+x*
For the following exercises, determine
a. intervals where f is increasing or decreasing,

b. local minima and maxima of f,

C. intervals where f is concave up and concave
down, and
d. the inflection points of f. Sketch the curve, then

use a calculator to compare your answer. If you
cannot determine the exact answer analytically, use
a calculator.

231. [T] f(x) = sin(xx) — cos(nx) over x = [—1, 1]

232. [T] f(x) = x + sin(2x) over x = [—%, %]

)

233. [T] f(x) = sinx + tanx over (—%,

N

234. [T] f(x) = (x—2)%(x —4)?

235. [T] f(x) = 11—,

x#1
236. [T] f(x) =S10X over x= [27, 0) U (0, 2]

237.  f(x) = sin(x)e” over x = [z, 7]

238. f(x) =Inxvx, x>0

Chapter 4 | Applications of Derivatives

239. f(0) =dvE+4 x>0

240, f() =<, x#0

For the following exercises, interpret the sentences in terms

of f, f’, and f”.

241. The population is growing more slowly. Here f is

the population.

242. A bike accelerates faster, but a car goes faster. Here
f = Bike’s position minus Car’s position.

243. The airplane lands smoothly. Here f is the plane’s
altitude.

244, Stock prices are at their peak. Here f is the stock

price.

245. The economy is picking up speed. Here f is a

measure of the economy, such as GDP.

For the following exercises, consider a third-degree
polynomial  f(x), which  has the properties

f'(1)=0, f'(3) =0. Determine whether the following

statements are true or false. Justify your answer.

246. f(x) =0 forsome 1 <x <3
247. f"(x) =0 forsome 1 <x<3

248. There is no absolute maximum at x = 3

249. If f(x) has three roots, then it has 1 inflection

point.

250. If f(x) has one inflection point, then it has three real

roots.
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4.6 | Limits at Infinity and Asymptotes

Learning Objectives

4.6.1 Calculate the limit of a function as x increases or decreases without bound.

4.6.2 Recognize a horizontal asymptote on the graph of a function.

4.6.3 Estimate the end behavior of a function as x increases or decreases without bound.
4.6.4 Recognize an obligue asymptote on the graph of a function.

4.6.5 Analyze a function and its derivatives to draw its graph.

We have shown how to use the first and second derivatives of a function to describe the shape of a graph. To graph a
function f defined on an unbounded domain, we also need to know the behavior of f as x — +o0. In this section, we

define limits at infinity and show how these limits affect the graph of a function. At the end of this section, we outline a
strategy for graphing an arbitrary function f.

Limits at Infinity

We begin by examining what it means for a function to have a finite limit at infinity. Then we study the idea of a function
with an infinite limit at infinity. Back in Introduction to Functions and Graphs, we looked at vertical asymptotes; in
this section we deal with horizontal and oblique asymptotes.

Limits at Infinity and Horizontal Asymptotes
Recall that xli_l)na f(x) =L means f(x) becomes arbitrarily close to L as long as x is sufficiently close to a. We can

extend this idea to limits at infinity. For example, consider the function f(x) =2+ % As can be seen graphically in

Figure 4.40 and numerically in Table 4.2, as the values of x get larger, the values of f(x) approach 2. We say the limit

as x approaches co of f(x) is 2 and write xli)moo f(x) = 2. Similarly, for x < 0, as the values |x| get larger, the values

of f(x) approaches 2. We say the limit as x approaches —oco of f(x) is 2 and write xlin_loo f(x)=2.

Y S Sy Y g

Figure 4.40 The function approaches the asymptote y =2 as x approaches +oco.
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x 10 100 1,000 10,000
2+14 1 21 2.01 2.001 2.0001
x -10 | -100 | -1000 | =10,000
2+1 1 19 1.9 1.999 1.9999

Table 4.2 Values of a function f as x - +o

More generally, for any function f, we say the limit as x — oo of f(x) is L if f(x) becomes arbitrarily close to

L as long as x is sufficiently large. In that case, we write xli)moo f(x) = L. Similarly, we say the limit as x - —oco of

f(x) is L if f(x) becomes arbitrarily close to L as long as x < 0 and |x| is sufficiently large. In that case, we write

. lin_loo f(x) = L. We now look at the definition of a function having a limit at infinity.

Definition

(Informal) If the values of f(x) become arbitrarily close to L as x becomes sufficiently large, we say the function

f has a limit at infinity and write
Hm f(x) = L.

If the values of f(x) becomes arbitrarily close to L for x <0 as |x| becomes sufficiently large, we say that the

function f has a limit at negative infinity and write
Jim_f = L.
If the values f(x) are getting arbitrarily close to some finite value L as x - oo or x — —oo, the graph of f approaches
the line y = L. In that case, the line y = L is a horizontal asymptote of f (Figure 4.41). For example, for the function

fx) = %, since xli}rnoo f(x) =0, theline y =0 is a horizontal asymptote of f(x) = %

Definition

If xli}moo f(x)=L or . En_loo f(x) =L, we say the line y = L is a horizontal asymptote of f.
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y y
_________________________________ LM
f(x)
R gy
X X
(@) (b)

Figure 4.41 (a) As x — oo, the values of f are getting arbitrarily close to L. Theline y =L
is a horizontal asymptote of f. (b) As x - —oo, the values of f are getting arbitrarily close to

M. Theline y = M is a horizontal asymptote of f.

A function cannot cross a vertical asymptote because the graph must approach infinity (or —oo) from at least one direction
as x approaches the vertical asymptote. However, a function may cross a horizontal asymptote. In fact, a function may

@ + 1 shownin Figure

cross a horizontal asymptote an unlimited number of times. For example, the function f(x) =
4.42 intersects the horizontal asymptote y = 1 an infinite number of times as it oscillates around the asymptote with ever-

decreasing amplitude.

NS

cos(x) i
X

f(x) =

?'6'1'0'1'5'2'0'2'5'3'0)‘

Figure 4.42 The graph of f(x) = (cosx)/x+ 1 crosses its

horizontal asymptote y = 1 an infinite number of times.

The algebraic limit laws and squeeze theorem we introduced in Introduction to Limits also apply to limits at infinity. We
illustrate how to use these laws to compute several limits at infinity.

Example 4.21

Computing Limits at Infinity

For each of the following functions f, evaluate lemm f(x) and xlirgm f(x). Determine the horizontal

asymptote(s) for f.

. =5-2
2 fw=5-3%

b. f(x) - sigx

c. f(x)=tan"!(x)
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Solution

a. Using the algebraic limit laws, we have
: 2 _ SN | U —
xll)moo(S - ;) = tlim 5-2( lim 1)( lim 1)=5-2.0=5.
Similarly, B Emw f(x) =5. Therefore, f(x)=5-— % has a horizontal asymptote of y =5 and f
X

approaches this horizontal asymptote as x — +oo as shown in the following graph.

—E:') + t + G‘OIG

Figure 4.43 This function approaches a horizontal asymptote
as x — +090.

b. Since —1 <sinx <1 forall x, we have

—1 . sinx _ 1
¥ <% =%
for all x # 0. Also, since
-1 _n_ 1
lemooT =0= lemoof’

we can apply the squeeze theorem to conclude that

lim_SiNX — o
x—=>o00 X :
Similarly,
.o sinx _
x lyg:;x: x =0

Thus, f(x) = % has a horizontal asymptote of y =0 and f(x) approaches this horizontal asymptote

as x — +oo as shown in the following graph.
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sin(x)

Since

it follows that

Similarly, since

it follows that

y/4

graph.

Figure 4.44 This function crosses its horizontal asymptote multiple times.

interval (—z/2, #/2) as shown in the following graph.

Y
10+

c. To evaluate xli)mmtan_l (x) and B lin_lootan_l (x), we first consider the graph of y = tan(x) over the

As aresult, y= 5 and y

3 5 | - 2
11
—5l i
-31 =2
~10+
Figure 4.45 The graph of tanx has vertical asymptotes at
X = i%

lim _tanx = oo,
x = (7/2)

. -1 _
xll)mootan x) = >

lim tanx = —oo0,
x = (-n/2)"

. -1 _
xl}n_lootan x) = >

= - % are horizontal asymptotes of f(x) = tan~! (x) as shown in the following

411
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f(x) = tan 1(x)

= S T TR
y ‘ —21
Figure 4.46 This function has two horizontal asymptotes.

@ 420 Epyaluate . linloo(S + %) and lemw(3 + 4). Determine the horizontal asymptotes of f(x) =3 + 4, if

X x°

any.

Infinite Limits at Infinity
Sometimes the values of a function f become arbitrarily large as x - o0 (or as x - —o0). In this case, we write

xli}m00 f(x) =00 (or B Ergoo f(x) = o). On the other hand, if the values of f are negative but become arbitrarily large in

magnitude as x — oo (oras x — —00), wewrite lim f(x) =—co (or lim f(x)= —c0).

For example, consider the function f(x) = x3. As seen in Table 4.3 and Figure 4.47, as x — oo the values f(x)

become arbitrarily large. Therefore, xli}mmx3 = 0o0. On the other hand, as x - —oo0, the values of f(x) = x> are
negative but become arbitrarily large in magnitude. Consequently, . lirgoox3 = —o00.

x 10 20 50 100 1000

2 1000 8000 125,000 1,000,000 1,000,000,000

X -10 =20 =50 —100 —1000

2 —1000 —8000 —125,000 —1,000,000 —1,000,000,000

Table 4.3 Values of a power function as x — +o0
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Figure 4.47 For this function, the functional values approach infinity as
X = +o00.

Definition

(Informal) We say a function f has an infinite limit at infinity and write
xll)moof(x) = 0.

if f(x) becomes arbitrarily large for x sufficiently large. We say a function has a negative infinite limit at infinity and
write

xli)moof(x) = —00.

if f(x) <0 and |f(x)| becomes arbitrarily large for x sufficiently large. Similarly, we can define infinite limits as

X — —00.

Formal Definitions

Earlier, we used the terms arbitrarily close, arbitrarily large, and sufficiently large to define limits at infinity informally.
Although these terms provide accurate descriptions of limits at infinity, they are not precise mathematically. Here are more
formal definitions of limits at infinity. We then look at how to use these definitions to prove results involving limits at
infinity.

Definition

(Formal) We say a function f has a limit at infinity, if there exists a real number L such that for all € > 0, there

exists N > 0 such that

lf)—Ll<e
for all x > N. In that case, we write

Jim @ =1

(see Figure 4.48).
We say a function f has a limit at negative infinity if there exists a real number L such that for all & > 0, there

exists NV < 0 such that
lfC) =Ll <e

for all x < N. In that case, we write

Jim /)= L.
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y
f(x)
L+e
8 ) N rmy—r—y—r
L—€
N X

Figure 4.48 For a function with a limit at infinity, for all
x>N, |f(x)—L|<e.

Earlier in this section, we used graphical evidence in Figure 4.40 and numerical evidence in Table 4.2 to conclude that

Xli)moo(Z + %) = 2. Here we use the formal definition of limit at infinity to prove this result rigorously.

Example 4.22 A Finite Limit at Infinity Example

Use the formal definition of limit at infinity to prove that lemm(Z + %) =2.

Solution

Let e>0. Let N = % Therefore, for all x > N, we have

-4 e

4.21 .
@ Use the formal definition of limit at infinity to prove that xll)moo(?) - L) =3.

‘We now turn our attention to a more precise definition for an infinite limit at infinity.

Definition

(Formal) We say a function f has an infinite limit at infinity and write
RAWORE
if forall M > 0, there exists an N > 0 such that
fx)>M
forall x > N (see Figure 4.49).

We say a function has a negative infinite limit at infinity and write
xlimoof(x) = -

if forall M < 0, there exists an N > 0 such that

fx)y <M
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forall x > N.

Similarly we can define limits as x — —oo.

y=1fx)

N X
Figure 4.49 For a function with an infinite limit at infinity, for
all x> N, f(x)> M.

Earlier, we used graphical evidence (Figure 4.47) and numerical evidence (Table 4.3) to conclude that lemmx3 = 0.

Here we use the formal definition of infinite limit at infinity to prove that result.

Example 4.23 An Infinite Limit at Infinity

Use the formal definition of infinite limit at infinity to prove that lemmx3 = o0.

Solution
Let M > 0. Let N = . Then, for all x > N, we have
3 3
x3>N3=(w\7) =M.

Therefore, lim X3 = 0.
X — 0

@ 4.22  Use the formal definition of infinite limit at infinity to prove that xli}mgg?vc2 = 0.

End Behavior

The behavior of a function as x — +oo is called the function’s end behavior. At each of the function’s ends, the function

could exhibit one of the following types of behavior:

1. The function f(x) approaches a horizontal asymptote y = L.
2. The function f(x) - o or f(x) - —oo.

3. The function does not approach a finite limit, nor does it approach oo or —oo. In this case, the function may have
some oscillatory behavior.
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Let’s consider several classes of functions here and look at the different types of end behaviors for these functions.
End Behavior for Polynomial Functions

Consider the power function f(x) = x" where n is a positive integer. From Figure 4.50 and Figure 4.51, we see that

xli)moox” =oo;n=1,23,...

and

5 4 -3 -2-1 0 1 2 3 4 5%
Figure 4.50 For power functions with an even power of n,

lim x"=00 = lim x"
X =00 X = -0
y = x5
e
y=x
54 Y
wf =l 3 =0 1 2 3 4 5X
-51
~104

Figure 4.51 For power functions with an odd power of n,

lim x" =00 and lim x" = —oo0.
X — o0 X — —0

Using these facts, it is not difficult to evaluate lemmcx" and B lin_loocx”, where c¢ is any constant and 7 is a positive

integer. If ¢ > 0, the graph of y = cx" is a vertical stretch or compression of y = x", and therefore
lim cx”= lim x" and lim cx" = lim x"ifc > 0.
X — 00 X — 00 X — —00 X = —00

If ¢ <0, the graph of y = cx" is a vertical stretch or compression combined with a reflection about the x -axis, and

therefore

lim cx"=— lim x" and lim cx"=— lim x"ifc <O.
X = 0 X = 0 X = —00 X = =0
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If c=0,y=cx"=0, inwhichcase lim cx"=0= lim cx".
X — 0 X — —00

Example 4.24

Limits at Infinity for Power Functions

For each function f, evaluate xli)moo f(x) and . gn_loo f(x).

a. f(x)=-5x>
b, f(x)=2x*
Solution
a. Since the coefficient of x° is —5, the graph of f(x) = —5x> involves a vertical stretch and reflection
of the graph of y = x> about the x -axis. Therefore, lim (—5x3) =—o00 and _lim (—5x3) = 0.
X = 0 X = —00

b. Since the coefficient of x* is 2, the graph of f(x) = 2x* is a vertical stretch of the graph of y = x*,

Therefore, lim 2x* = 00 and lim 2x* = co.
X = 0 X = =0

@ 423 Let f(x)=-3x* Find lim_f(x).

We now look at how the limits at infinity for power functions can be used to determine R l}rgrloo f(x) for any polynomial
function f. Consider a polynomial function

f) =apx"+a,_ X"+ .. +a;x+a
of degree n > 1 so that a, # 0. Factoring, we see that

_ n 411 a1 a0 1
fx) =ayx (1+—an X+"'+an_xn—1+anx" .

As x - +o0, all the terms inside the parentheses approach zero except the first term. We conclude that
. s n
x l}rgoof(x) T x lln;ooa”x ’

For example, the function f(x) = 5x3 = 3x% + 4 behaves like glx) = 5x3 as x - +oo0 as shown in Figure 4.52 and
Table 4.4.
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f(x) = 5x3 — 3x*> + 4

51

Figure 4.52 The end behavior of a polynomial is determined
by the behavior of the term with the largest exponent.

x 10 100 1000
fx) =5x3=3x% +4 4704 4,970,004 4,997,000,004
g(x) =5x3 5000 5,000,000 5,000,000,000
x -10 ~100 —1000
f) =553 =322 +4 -5296 —5,029,996 -5,002,999,996
g(x) = 5x° ~5000 —5,000,000 —5,000,000,000

Table 4.4 A polynomial’s end behavior is determined by the term with the
largest exponent.

End Behavior for Algebraic Functions

The end behavior for rational functions and functions involving radicals is a little more complicated than for polynomials. In
€3}
q(x)
the degree of the numerator and the degree of the denominator. To evaluate the limits at infinity for a rational function,
we divide the numerator and denominator by the highest power of x appearing in the denominator. This determines which

Example 4.25, we show that the limits at infinity of a rational function f(x) = depend on the relationship between

term in the overall expression dominates the behavior of the function at large values of x.

Example 4.25

Determining End Behavior for Rational Functions

For each of the following functions, determine the limits as x — oo and x - —oo. Then, use this information
to describe the end behavior of the function.

a. f(x)= % (Note: The degree of the numerator and the denominator are the same.)
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2
b. f(x)= % (Note: The degree of numerator is less than the degree of the denominator.)
—-Jx+

e f(x)= M

py) (Note: The degree of numerator is greater than the degree of the denominator.)

Solution

a. The highest power of x in the denominator is x. Therefore, dividing the numerator and denominator by
x and applying the algebraic limit laws, we see that

: 3x—=1 _ ; 3—-1/x
xllnilocJZ)H—S _xlzrgm2+5/x

lim (3-—1/x)
X = +00

lim (2 + 5/x)
X — +00

lim 3— lim 1/x
X > +0

— X > Foo
lim 24+ lim 5/x
X = 00 X = +00
2+0 2

Since . gn_‘_}m fx) = %, we know that y = % is a horizontal asymptote for this function as shown in

the following graph.
y
3x+1 T
=2t |
S Y
54

Figure 4.53 The graph of this rational function approaches a
horizontal asymptote as x — +o0.

b. Since the largest power of x appearing in the denominator is x>, divide the numerator and denominator

by x>, After doing so and applying algebraic limit laws, we obtain

3+ 2x iy 342 30)+20)

xS Feogyd _sp 7 X Ee4 52473 4=5(0)+7(0)

Therefore f has a horizontal asymptote of y = 0 as shown in the following graph.
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Yy

5.1

_ 3+ 2 T

f(X) T4l -5x+7 1
~ £ t + t t 0 t + t + é_, "

_5._

Figure 4.54 The graph of this rational function approaches
the horizontal asymptote y = 0 as x — +o00.

c. Dividing the numerator and denominator by x, we have

3x2+4x= li 3x+4
x—too x+2 x = xool +2/x

As x — +oo, the denominator approaches 1. As x — oo, the numerator approaches +oo. As

Xx — —oo, the numerator approaches —oo. Therefore lim f(x) = co, whereas lim _f(x) = —o0
X — 0O X = —0

as shown in the following figure.

y
07 3x° + 4

X* + 4x
251 f(X)_ X2
20+
15+

10+

T14-12-10 8 6 4 29 2 4 6 8 10 12 14%
5l
~-10+
—154
—20+
—251

~304+

Figure 4.55 As x — oo, the values f(x) - c0. As x — —oo, the

values f(x) - —oo0.
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2
@ 4.24 Evaluate lim % and use these limits to determine the end behavior of
X205y _Ax 47

3x2+2x—1
flx) === 2
5x2—4x+7

(3x2 + 4x
(x+2)

graph of f appears almost linear. Although f is certainly not a linear function, we now investigate why the graph of f

Before proceeding, consider the graph of f(x) = shown in Figure 4.56. As x - oo and x — —oo0, the

seems to be approaching a linear function. First, using long division of polynomials, we can write

_ 3 +dx _ _ 4
fo = x+2 = 3x 2+)c+2'

Since _4 0 as x = +o00, we conclude that

(x+2)

. e one p 4
xllmioo(f(x) (x 2))_xlyriloox+2_

Therefore, the graph of f approaches the line y = 3x —2 as x — +oo. This line is known as an eblique asymptote for
f (Figure 4.56).

y
3xX° + 4x
f(x) i
fy=3x—2
_1b ' X

Figure 4.56 The graph of the rational function
flx) = (3x2 + 4x)/(x + 2) approaches the oblique asymptote

y=3x—-2asx - +c0.

We can summarize the results of Example 4.25 to make the following conclusion regarding end behavior for rational
functions. Consider a rational function

Foy = PO _ apx"+a,_1x" "'+ ... +ax+a,
90 " x4 by A" by x+ by

where a, # 0and b, # 0.

1. If the degree of the numerator is the same as the degree of the denominator (n = m), then f has a horizontal

asymptote of y = a, /b, as x — +o0.

2. [If the degree of the numerator is less than the degree of the denominator (n < m), then f has a horizontal

asymptote of y =0 as x —» +c0.

3. If the degree of the numerator is greater than the degree of the denominator (n > m), then f does not have a
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horizontal asymptote. The limits at infinity are either positive or negative infinity, depending on the signs of the
leading terms. In addition, using long division, the function can be rewritten as

G Ricy}
o) =5 =g+ 255

where the degree of r(x) is less than the degree of g(x). As a result, B Erg_loor(x)/q(x) = 0. Therefore, the values

of [f(x) — g(x)] approach zero as x — +oo. If the degree of p(x) is exactly one more than the degree of g(x)
(n=m+1), the function g(x) is a linear function. In this case, we call g(x) an oblique asymptote.

Now let’s consider the end behavior for functions involving a radical.

Example 4.26

Determining End Behavior for a Function Involving a Radical

3x—=2

Vax2 45

Find the limits as x - oo and x - —o0 for f(x) = and describe the end behavior of f.

Solution
Let’s use the same strategy as we did for rational functions: divide the numerator and denominator by a power of

x. To determine the appropriate power of x, consider the expression V4x2 +5 in the denominator. Since

Vax2 +5 ~ \ax? = 21n

for large values of x in effect x appears just to the first power in the denominator. Therefore, we divide the
numerator and denominator by |x|. Then, using the fact that |x| = x for x >0, |x|=—x for x <0, and

x| = V)? for all x, we calculate the limits as follows:

. 3x=2 . (1/hBx—2)
xll»moo— - xlimoo—
Vax? +5 A/x)V4x> + 5
o _(0GBx—2)
TR (1) 4x? + 5)
— lim 3-2/x =i=i
st V42
: 3x—2 . (1/1x)(3x — 2)
lim = lim ——————=
T T4 15 TR WVAxE + 5
I o V29 2 )
T (1P 4x? + 5)

BB ysn? A2
Therefore, f(x) approaches the horizontal asymptote y :% as x — oo and the horizontal asymptote y = —%

as x - —oo as shown in the following graph.
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Figure 4.57 This function has two horizontal asymptotes and it crosses one
of the asymptotes.

4.25 2
@ Evaluate lim 13X~ +4
x—o x46

Determining End Behavior for Transcendental Functions

The six basic trigonometric functions are periodic and do not approach a finite limit as x — +oo0. For example, sinx
oscillates between 1and —1 (Figure 4.58). The tangent function x has an infinite number of vertical asymptotes as
X — +o00; therefore, it does not approach a finite limit nor does it approach +o0 as x — +oo as shown in Figure 4.59.
y
2..
f(x) = sin(x)

—4 2 2 \{— X

—24

Figure 4.58 The function f(x) = sinx oscillates between

land —1 as x - +o0

Y
yus
f(x) = tan(x)
24
3 _m s - 3mX
2 2 1 2 2
-2+

Figure 4.59 The function f(x) = tanx does not approach a

limit and does not approach +oc0 as x — o0

Recall that for any base b > 0, b # 1, the function y = b* is an exponential function with domain (—co, c0) and range
(0, 00). If b> 1, y=>b" is increasing over (—oo, ). If 0 <b <1, y=>" is decreasing over (—oo, c0). For

the natural exponential function f(x) =e*, e~ 2.718 > 1. Therefore, f(x) = e is increasing on (—o0, c0) and the
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range is ~(0, o0). The exponential function f(x) = ¢* approaches co as x — oo and approaches 0 as x = —oco as
shown in Table 4.5 and Figure 4.60.

x =5 -2 0 2 5

e* 0.00674 0.135 1 7.389 148.413

Table 4.5 End behavior of the natural exponential function

y
4t
f(x) = e*
2..
+ _é + 0 + é + %

Figure 4.60 The exponential function approaches zero as
x — —oo and approaches oo as x — oo.

Recall that the natural logarithm function f(x) =1In(x) is the inverse of the natural exponential function y = e*.
Therefore, the domain of f(x) = In(x) is (0, o) and the range is (—oo0, o0). The graph of f(x) = In(x) is the reflection
of the graph of y = e¢” about the line y = x. Therefore, In(x) - —co0 as x — 07 and In(x) - o0 as x — oo as shown
in Figure 4.61 and Table 4.6.

x 0.01 0.1 1 10 100

In(x) —4.605 -2.303 0 2.303 4.605

Table 4.6 End behavior of the natural logarithm function

y

f(x) = In(x)

Figure 4.61 The natural logarithm function approaches oo as
X — 0.
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Example 4.27

Determining End Behavior for a Transcendental Function

(2 +3eM

7= 569 and describe the end behavior of f.

Find the limits as x - oo and x - —o0 for f(x) =

Solution

To find the limit as x — oo, divide the numerator and denominator by e*:

. _ e 2+ 36"
lemoof(x) - lemoo7 — 5e*
. (2eH+3

T %7 =5

As shown in Figure 4.60, e* — co as x — oco. Therefore,

2 _0= lim L
X = ooex - 0 - xll»mooex'
We conclude that xli)moo fx)= - %, and the graph of f approaches the horizontal asymptote y = —%
as x — oo. To find the limit as x —» —oo, use the fact that e¥ - 0 as x - —oo to conclude that
lemm f(x) = %, and therefore the graph of approaches the horizontal asymptote y = % as x - —oo.
X —
@ 4.26 Find the limits as x - o0 and x - —oo0 for f(x) = %.

Guidelines for Drawing the Graph of a Function

We now have enough analytical tools to draw graphs of a wide variety of algebraic and transcendental functions. Before
showing how to graph specific functions, let’s look at a general strategy to use when graphing any function.

Problem-Solving Strategy: Drawing the Graph of a Function

Given a function f, use the following steps to sketch a graph of f:

1. Determine the domain of the function.

2. Locate the x-and y -intercepts.

3. Evaluate xli)moo f(x) and . En_loo f(x) to determine the end behavior. If either of these limits is a finite number

L, then y =L is a horizontal asymptote. If either of these limits is co or —co, determine whether f has

an oblique asymptote. If f is a rational function such that f(x) = px) where the degree of the numerator

q(x)’
is greater than the degree of the denominator, then f can be written as

_pWw _ )
f&x) = e g(x) + 20’

where the degree of r(x) is less than the degree of g(x). The values of f(x) approach the values of g(x) as
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Xx — +o00. If g(x) is a linear function, it is known as an oblique asymptote.
4. Determine whether f has any vertical asymptotes.

5. Calculate f’. Find all critical points and determine the intervals where f is increasing and where f is

decreasing. Determine whether f has any local extrema.

6. Calculate f”. Determine the intervals where f is concave up and where f is concave down. Use this
information to determine whether f has any inflection points. The second derivative can also be used as an

alternate means to determine or verify that f has a local extremum at a critical point.

Now let’s use this strategy to graph several different functions. We start by graphing a polynomial function.

Example 4.28

Sketching a Graph of a Polynomial
Sketch a graph of f(x) = (x — 1)2(x +2).

Solution

Step 1. Since f is a polynomial, the domain is the set of all real numbers.

Step 2. When x = 0, f(x) = 2. Therefore, the y-interceptis (0, 2). To find the x -intercepts, we need to solve
the equation (x — 1)2(x +2) =0, gives usthe x-intercepts (1, 0) and (-2, 0)

Step 3. We need to evaluate the end behavior of f. As x - o0, (x — 1)2 — o0 and (x +2) — oo. Therefore,
Xli}m@)f(x) =00. As x > —0, (x— 1)2 — oo and (x + 2) - —oo. Therefore, B litr_loof(x) = —o0. To get

even more information about the end behavior of f, we can multiply the factors of f. When doing so, we see

that
f)=x-D>x+2)=x>=3x+2.
Since the leading term of f is x>, we conclude that f behaves like y = x> as x - +c0.
Step 4. Since f is a polynomial function, it does not have any vertical asymptotes.
Step 5. The first derivative of f is
f(x) =3x>=3.

Therefore, f has two critical points: x = 1, —1. Divide the interval (—oo0, co0) into the three smaller intervals:
(=00, —=1), (=1,1), and (1, o). Then, choose test points x = -2, x=0, and x=2 from these

intervals and evaluate the sign of f’(x) at each of these test points, as shown in the following table.
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Interval Test Sign of Derivative Conclusion
Point F()=3x2 =3 =3(x—1)(x+1)
(oo, =) | x==2 | D)=+ fis
increasing.
(=1, 1 x=0 (BHEEH) = - fis
decreasing.
(1, c0) x=2 HHHH) =+ fis
increasing.
From the table, we see that f has a local maximum at x = —1 and a local minimum at x = 1. Evaluating

f(x) at those two points, we find that the local maximum value is f(—1) = 4 and the local minimum value is

f)=0.
Step 6. The second derivative of f is
f"(x) = 6x.

The second derivative is zero at x = 0. Therefore, to determine the concavity of f, divide the interval
(—o0, o©) into the smaller intervals (—oo0, 0) and (0, o), and choose test points x =—1 and x =1 to

determine the concavity of f on each of these smaller intervals as shown in the following table.

Interval Test Point Sign of f"(x) = 6x Conclusion
(-0, 0) x=-1 - f is concave down.
(0, ) x=1 + f is concave up.

We note that the information in the preceding table confirms the fact, found in step 5, that f has a local
maximum at x = —1 and a local minimum at x = 1. In addition, the information found in step 5 —namely, f
has a local maximum at x = —1 and a local minimum at x =1, and f’'(x) =0 at those points—combined

with the fact that f” changes sign only at x = O confirms the results found in step 6 on the concavity of f.

Combining this information, we arrive at the graph of f(x) = (x — 1)2 (x +2) shown in the following graph.

427
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fix) = (x — 1)’(x + 2)

v

@ 4.27  Sketch a graph of f(x) = (x — 1) (x + 2).

Example 4.29

Sketching a Rational Function

2
Sketch the graph of f(x) = —*—

=)

Solution
Step 1. The function f is defined as long as the denominator is not zero. Therefore, the domain is the set of all

real numbers x except x = +1.
2
Step 2. Find the intercepts. If x =0, then f(x) =0, so O is an intercept. If y =0, then —X—=0,

which implies x = 0. Therefore, (0, 0) is the only intercept.
Step 3. Evaluate the limits at infinity. Since f is a rational function, divide the numerator and denominator by

the highest power in the denominator: x%. We obtain

2
x_)iml fxz = xlln-}_!ooLl_ 1 = —l.
x2
Therefore, f has a horizontal asymptote of y = —1 as x - o and x — —o0.

Step 4. To determine whether f has any vertical asymptotes, first check to see whether the denominator has any
zeroes. We find the denominator is zero when x = +1. To determine whether the lines x =1 or x = —1 are

vertical asymptotes of f, evaluate lim1 f(x) and lim | f(x). By looking at each one-sided limit as x — 1,
X = X = -

we see that
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2 2
lim —% 5 =—ocoand lim_ X 5 = 00.
rs1T1—x x=>1"1—x%
In addition, by looking at each one-sided limit as x — —1, we find that
2 2
lim —X 5 =ocoand lim _ X 5 = —oo.
x> -1T1—x x—->-1"1—-x
Step 5. Calculate the first derivative:
1 —x?)2x) — x2(-2x
f/ (x) — ( ) 3 ) — 2x 5
2 2
(1 -X ) (1 - X )

Critical points occur at points x where f’(x) =0 or f’(x) is undefined. We see that f’ (x) =0 when x = 0.
The derivative f’ is not undefined at any point in the domain of f. However, x = +1 are not in the domain of
f. Therefore, to determine where f is increasing and where f is decreasing, divide the interval (—oo, o0) into

four smaller intervals: (—oo0, —1), (=1, 0), (0, 1), and (1, o), and choose a test point in each interval to

determine the sign of f’(x) in each of these intervals. The values x = -2, x= — %, X = %, and x =2
are good choices for test points as shown in the following table.

Interval Test Point Sign of f'(x) = 2x2 B Conclusion

(1-2)

(=00, =1) x=-2 -+ =- f is decreasing.

(-1, 0 x=-1/2 —+ =- f is decreasing.

O, 1) x=1/2 +/+ =+ f is increasing.

(1, o0) x=2 +/+ =+ f is increasing.

From this analysis, we conclude that f has a local minimum at x = 0 but no local maximum.

Step 6. Calculate the second derivative:

429
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three smaller intervals (—oo, —1),

S

test points as shown in the following table.

_ (- x2)2 (@) = 2x(2(1 = x*)(-2x))

(-

(1= x?)2(1 - x?) + 8x7

(1)

~ 21 - x%)+ 8x*

3

(1-+7)

6x2+2.

3

(1)

to evaluate the sign of f”(x). in each of these intervals. The values x = -2,
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To determine the intervals where f is concave up and where f is concave down, we first need to find all points

x where f”(x) =0 or f”(x) is undefined. Since the numerator 6x>+2 # 0 forany x, f”(x) is never zero.
Furthermore, f” is not undefined for any x in the domain of f. However, as discussed earlier, x = +1 are
not in the domain of f. Therefore, to determine the concavity of f, we divide the interval (—oo0, o) into the

(-1, =1), and (1, o0), and choose a test point in each of these intervals

x=0, and x =2 are possible

Interval Test Point Sign of f"(x) = 6x2 + 23 Conclusion
(1)

(=00, —1) x==-2 +/—- =- f is concave down.

(-1, -1 x=0 +/+ =+ f is concave up.

(1, o0) x=2 +/—- =- f is concave down.

concavity at x =—1 and x =1,

continuous at x = —1 or x = 1.
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there are no inflection points at either of these places because f is not
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__________,._________________
N N N (=) N A .

+ + + + +

P g L R 8 S 8 e Ry

@ 428 Sieich a graph of f(x) = %'

Example 4.30

Sketching a Rational Function with an Oblique Asymptote

Sketch the graph of f(x) = (xx——l)
Solution

Step 1. The domain of f is the set of all real numbers x except x = 1.
Step 2. Find the intercepts. We can see that when x =0, f(x) =0, so (0, 0) is the only intercept.
Step 3. Evaluate the limits at infinity. Since the degree of the numerator is one more than the degree of the

denominator, f must have an oblique asymptote. To find the oblique asymptote, use long division of polynomials

to write

2
X< _ 1
_1—x+l+x_1.

J&) =

X

Since 1/(x—1) - 0 as x - +oco0, f(x) approaches theline y=x+1 as x - +oo. Theline y=x4+1 is

an oblique asymptote for f.

Step 4. To check for vertical asymptotes, look at where the denominator is zero. Here the denominator is zero at
x = 1. Looking at both one-sided limits as x — 1, we find

2 2
lim &+ — =oand lim_ —&
x—1 x—>17x—

x—- 1t

= —00.

Therefore, x = 1 is a vertical asymptote, and we have determined the behavior of f as x approaches 1 from

the right and the left.
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Step 5. Calculate the first derivative:

o = DEY) = x*(1) _ 1% -2
T T T

We have f’(x) =0 when ¥2—2x= x(x —2) = 0. Therefore, x =0 and x =2 are critical points. Since f
is undefined at x = 1, we need to divide the interval (—oo, co) into the smaller intervals (—oo, 0), (0, 1),

(1, 2), and (2, o), and choose a test point from each interval to evaluate the sign of f’(x) in each of these
smaller intervals. For example, let x = -1, x= %, x= %, and x =3 be the test points as shown in the

following table.

. 5 _ .

Interval Test Point Sign of f/(x) = X-= 2;; _X(x 2; Conclusion
(x—1) (x=1)

(=00, 0) x=-1 =)+ =+ f is increasing.

©, 1 x=1/2 B+ == f is decreasing.

1,2 x=73/2 B+ == f is decreasing.

(2, ) x=3 HH/+ =+ f is increasing.

From this table, we see that f has a local maximum at x = 0 and a local minimum at x = 2. The value of f
at the local maximum is f(0) = O and the value of f at the local minimum is f(2) = 4. Therefore, (0, 0) and
(2, 4) are important points on the graph.

Step 6. Calculate the second derivative:

_(r=D?@2x—2) — (¥ - 2x)2(x - 1))

o) —
(= D(r = D@x = 2) - 2(x* - 2x))]
- (-
(x = 1)(2x —2) = 2(x* — 2x)
B -1
2% —dx 42— (207 - 4x)
- (- 1)°
__ 2
x-1*

We see that f”(x) is never zero or undefined for x in the domain of f. Since f is undefined at x =1, to
check concavity we just divide the interval (—oo, co0) into the two smaller intervals (—oo0, 1) and (1, c0), and

choose a test point from each interval to evaluate the sign of f”(x) in each of these intervals. The values x = 0
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and x = 2 are possible test points as shown in the following table.

Interval Test Point | Gign of f"(x) =—2— Conclusion
(x-1°

(—o0, 1) x=0 +/ - =- f is concave down.

(1, o0) x=2 +/4+ =+ f is concave up.

From the information gathered, we arrive at the following graph for f.

y
44
1 ix=1
L 2 4%
@ 4.29 (3x3 —2x+ 1)
Find the oblique asymptote for f(x) = W
X2 —

Example 4.31

Sketching the Graph of a Function with a Cusp
Sketch a graph of f(x) = (x — 1)2/3.

Solution

2
3
Step 1. Since the cube-root function is defined for all real numbers x and (x — 1)2/ 3= (\/x - 1) , the domain

of f is all real numbers.

Step 2: To find the y -intercept, evaluate f(0). Since f(0) =1, the y-intercept is (0, 1). To find the x

2/3

-intercept, solve (x — 1)“° = 0. The solution of this equation is x = 1, so the x -interceptis (1, 0).
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23
)

Step 3: Since B Ergoo(x -1 = oo, the function continues to grow without bound as x - oo and x - —o0.

Step 4: The function has no vertical asymptotes.
Step 5: To determine where f is increasing or decreasing, calculate f’. We find

f@=Fea-nTP =2

This function is not zero anywhere, but it is undefined when x = 1. Therefore, the only critical point is x = 1.
Divide the interval (—oo, o0) into the smaller intervals (—oo, 1) and (1, o0), and choose test points in each
of these intervals to determine the sign of f’(x) in each of these smaller intervals. Let x = 0 and x = 2 be the

test points as shown in the following table.

Interval Test Point | Sjonof f'(x) = —2 Conclusion
(=00, 1) x=0 +/ - =- [ is decreasing.
(1, o0) x=2 +/+ =+ f is increasing.

We conclude that f has a local minimum at x = 1. Evaluating f at x = 1, we find that the value of f at the
local minimum is zero. Note that f’ (1) is undefined, so to determine the behavior of the function at this critical

point, we need to examine lim1 f"(x). Looking at the one-sided limits, we have
X —

2 : 2
im —=——=o0ocand lim —&—=—
ro 1T 3 =113 x=1" 3=

Therefore, f hasacuspat x = 1.

Step 6: To determine concavity, we calculate the second derivative of f:

" 2 —4/3 -2
ff)=-§x-DH" = —=—nx
We find that f”(x) is defined for all x, but is undefined when x = 1. Therefore, divide the interval (—oo0, o)
into the smaller intervals (—oo, 1) and (1, o), and choose test points to evaluate the sign of f”(x) in each of

these intervals. As we did earlier, let x =0 and x = 2 be test points as shown in the following table.

Interval Test Point Sign of f"(x) = =2 Conclusion

9(x _ 1)4/3
(=00, 1) x=0 —/+ =- f is concave down.
(1, o0) x=2 —/+ =- f is concave down.
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From this table, we conclude that f is concave down everywhere. Combining all of this information, we arrive

at the following graph for f.

o o - " " 10 7 20

4.30  Consider the function f(x)=5— x*3. Determine the point on the graph where a cusp is located.

Determine the end behavior of f.
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4.6 EXERCISES

For the following exercises, examine the graphs. Identify 254,

where the vertical asymptotes are located. 1}0' l
251.
y
10+ 5
5T + — + : -
-4 -2 ‘*i 2 4x
2 4% -5t
—-10+4
255.
y
10+
252.
y
10+ 5
5t .
J -4 2 4x
4 ﬁ 0 4Xx
-57 -10
T For the following functions f(x), determine whether
there is an asymptote at x = a. Justify your answer
253. without graphing on a calculator.
1’(; x+1
T 256. f(x)=—s—""—a=-1
x> +5x+4
5"‘ = 'x =
257. f(x) oo 2
e , ,L - o 258. f(x)=@x+2)¥% a=-2
-4 -2 ¥ 4x
259. f()=@x—-D"a=1
260. f)=1+x" a=1
For the following exercises, evaluate the limit.
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262.

263.

264.

265.

266.

267.

268.

269.

270.

For the following exercises, find the horizontal and vertical

lim 2X=3

X = 0
lim

X — o0

lim

4x

x2—2x+5

x+2

3x3 —2x

Xm0y 4o+ 8

lim

x4—4x3+1

x—>—002_2x2_7x4

lim

3x

x—)004x2+1

lim

V4x2 -1

x—=>-00 x+2

: 4x
e

lim

w2-1

2vx

x—>cox —vx+1

asymptotes.

271, f() = x—2

272.

273.

274.

275.

276.

277.

278.

279.

280.

fo =11
3
f0 =5
_x*+3
fo) = x2+1
f(x) = sin(x)sin(2x)
f(x) = cosx + cos(3x) + cos(5x)
in(x)
fo) =37
S = Shf‘(x)
__ 1
fo = 422
fo)=—1——2x

x—1
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3
281 fx)=2+1
x” =1

28D, — sinx + cosx
f® sinx — cosx

283. f(x) =x —sinx
284, f(x)=L-vx

For the following exercises, construct a function f(x) that

has the given asymptotes.

285. x=1and y=2
286. x=1and y=0
287. y=4, x=-1
288. x=0

For the following exercises, graph the function on a
graphing calculator on the window x=[-5,5] and

estimate the horizontal asymptote or limit. Then, calculate
the actual horizontal asymptote or limit.

289. [T f(x) =~ +110

290. [T] f(x) = —2X+1
! 2 +7x+6

291. [T] _lim_x*+ 10x+25

292. [T] lim —X+2
S P,

293. [T] xgmwiﬁr—+52

For the following exercises, draw a graph of the functions
without using a calculator. Be sure to notice all important
features of the graph: local maxima and minima, inflection

points, and asymptotic behavior.

294, y=3x2+2x+4
295. y=x3—3x2+4

2x+1
296, y=—2x+1
X2 +6x+5

3 2
207, y=AHA L3



438
2
298. y:szr#
x“=3x—-4
299. y=Vx2—5x+4
300. y=2x\/16—x2

301. y=S%X on x=[-2x, 27]

302. y=e'—x°
303. y=xtanx, x = [—x, 7]

304. y=xIn(x), x>0

305. y= x2 sin(x), x = [—2x, 2x]
P(x)

O(x)

then the polynomials P(x) and Q(x) must have what

306. For f(x) =

to have an asymptote at y =2

relation?

P(x)
0(x)

then the polynomials P(x) and Q(x). must have what

307. For f(x)=

to have an asymptote at x =0,

relation?

308. If f’(x) hasasymptotesat y=3 and x =1, then
f(x) has what asymptotes?

and g(x) = 1 have

1 1
(=D (x—1)?

asymptotes at x = 1 and y = 0. What is the most obvious

309. Both f(x)=

difference between these two functions?

310. True or false: Every ratio of polynomials has vertical
asymptotes.
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4.7 | Applied Optimization Problems

Learning Objectives

4.7.1 Set up and solve optimization problems in several applied fields.

One common application of calculus is calculating the minimum or maximum value of a function. For example, companies
often want to minimize production costs or maximize revenue. In manufacturing, it is often desirable to minimize the
amount of material used to package a product with a certain volume. In this section, we show how to set up these types of
minimization and maximization problems and solve them by using the tools developed in this chapter.

Solving Optimization Problems over a Closed, Bounded Interval

The basic idea of the optimization problems that follow is the same. We have a particular quantity that we are interested
in maximizing or minimizing. However, we also have some auxiliary condition that needs to be satisfied. For example, in
Example 4.32, we are interested in maximizing the area of a rectangular garden. Certainly, if we keep making the side
lengths of the garden larger, the area will continue to become larger. However, what if we have some restriction on how
much fencing we can use for the perimeter? In this case, we cannot make the garden as large as we like. Let’s look at how
we can maximize the area of a rectangle subject to some constraint on the perimeter.

Example 4.32

Maximizing the Area of a Garden

A rectangular garden is to be constructed using a rock wall as one side of the garden and wire fencing for the
other three sides (Figure 4.62). Given 100 ft of wire fencing, determine the dimensions that would create a

garden of maximum area. What is the maximum area?

Figure 4.62 We want to determine the measurements x and
y that will create a garden with a maximum area using 100 ft

of fencing.

Solution
Let x denote the length of the side of the garden perpendicular to the rock wall and y denote the length of the
side parallel to the rock wall. Then the area of the garden is

A=x-y.
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We want to find the maximum possible area subject to the constraint that the total fencing is 100 ft. From Figure
4.62, the total amount of fencing used will be 2x + y. Therefore, the constraint equation is

2x +y = 100.

Solving this equation for y, we have y = 100 — 2x. Thus, we can write the area as
A(x) = x- (100 — 2x) = 100x — 2x2.

Before trying to maximize the area function A(x) = 100x — 2x%, we need to determine the domain under

consideration. To construct a rectangular garden, we certainly need the lengths of both sides to be positive.
Therefore, we need x > 0 and y > 0. Since y = 100 — 2x, if y > 0, then x < 50. Therefore, we are trying

to determine the maximum value of A(x) for x over the open interval (0, 50). We do not know that a function

necessarily has a maximum value over an open interval. However, we do know that a continuous function has
an absolute maximum (and absolute minimum) over a closed interval. Therefore, let’s consider the function

A(x) = 100x — 2x% over the closed interval [0, 50]. If the maximum value occurs at an interior point, then
we have found the value x in the open interval (0, 50) that maximizes the area of the garden. Therefore, we

consider the following problem:
Maximize A(x) = 100x — 2x% over the interval [0, 50].

As mentioned earlier, since A is a continuous function on a closed, bounded interval, by the extreme value

theorem, it has a maximum and a minimum. These extreme values occur either at endpoints or critical points. At
the endpoints, A(x) = 0. Since the area is positive for all x in the open interval (0, 50), the maximum must

occur at a critical point. Differentiating the function A(x), we obtain

A’ (x) =100 — 4x.
Therefore, the only critical point is x = 25 (Figure 4.63). We conclude that the maximum area must occur when
x = 25. Then we have y = 100 — 2x = 100 — 2(25) = 50. To maximize the area of the garden, let x = 25 ft
and y = 50 ft. The area of this garden is 1250 ft.

140{)__ Maximum area is 1250 square feet
when x = 25 feet

12004
ol A(x) = 100x — 2x2
800+
600+
4004

200+

s s s s s s s
t + t + t t t

-10 -5 0| 5 10 15 20 25 30 35 40 45 50 55X
~2001

Figure 4.63 To maximize the area of the garden, we need to find the

maximum value of the function A(x) = 100x — 2x2.
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4.31 Determine the maximum area if we want to make the same rectangular garden as in Figure 4.63, but
we have 200 ft of fencing.

Now let’s look at a general strategy for solving optimization problems similar to Example 4.32.

Problem-Solving Strategy: Solving Optimization Problems

Introduce all variables. If applicable, draw a figure and label all variables.

Determine which quantity is to be maximized or minimized, and for what range of values of the other variables
(if this can be determined at this time).

3. Write a formula for the quantity to be maximized or minimized in terms of the variables. This formula may
involve more than one variable.

4. Write any equations relating the independent variables in the formula from step 3. Use these equations to
write the quantity to be maximized or minimized as a function of one variable.

5. Identify the domain of consideration for the function in step 4 based on the physical problem to be solved.

6. Locate the maximum or minimum value of the function from step 4. This step typically involves looking for
critical points and evaluating a function at endpoints.

Now let’s apply this strategy to maximize the volume of an open-top box given a constraint on the amount of material to be
used.

Example 4.33

Maximizing the Volume of a Box

An open-top box is to be made from a 24 in. by 36 in. piece of cardboard by removing a square from each

corner of the box and folding up the flaps on each side. What size square should be cut out of each corner to get
a box with the maximum volume?

Solution

Step 1: Let x be the side length of the square to be removed from each corner (Figure 4.64). Then, the
remaining four flaps can be folded up to form an open-top box. Let V' be the volume of the resulting box.
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|« 24in :

36in

36 — 2xin

: . 24 — 2xin
Figure 4.64 A square with side length x inches is removed from each

corner of the piece of cardboard. The remaining flaps are folded to form an
open-top box.

Step 2: We are trying to maximize the volume of a box. Therefore, the problem is to maximize V.

Step 3: As mentioned in step 2, are trying to maximize the volume of a box. The volume of a box is
V=L-W-H, where L, W, and H are the length, width, and height, respectively.

Step 4: From Figure 4.64, we see that the height of the box is x inches, the length is 36 — 2x inches, and the
width is 24 — 2x inches. Therefore, the volume of the box is

V(x) = (36 — 2x)(24 — 2x)x = 4x° — 120x2 + 864x.

Step 5: To determine the domain of consideration, let’s examine Figure 4.64. Certainly, we need x > 0.
Furthermore, the side length of the square cannot be greater than or equal to half the length of the shorter side, 24

in.; otherwise, one of the flaps would be completely cut off. Therefore, we are trying to determine whether there
is a maximum volume of the box for x over the open interval (0, 12). Since V is a continuous function over

the closed interval [0, 12], we know V will have an absolute maximum over the closed interval. Therefore,
we consider V' over the closed interval [0, 12] and check whether the absolute maximum occurs at an interior
point.

Step 6: Since V(x) is a continuous function over the closed, bounded interval [0, 12], V must have an absolute
maximum (and an absolute minimum). Since V(x) = 0 at the endpoints and V(x) > 0 for 0 < x < 12, the

maximum must occur at a critical point. The derivative is
V' (x) = 12x% — 240x + 864.
To find the critical points, we need to solve the equation
12x% — 240x + 864 = 0.

Dividing both sides of this equation by 12, the problem simplifies to solving the equation

x2—20x+72=0.

Using the quadratic formula, we find that the critical points are

2
N 20ﬂ/(—20)2 —4()(72) _ 2012“12 _ 20124«5 104247,
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Since 10 4+ 247 is not in the domain of consideration, the only critical point we need to consider is 10 — 2V7.
Therefore, the volume is maximized if we let x=10-2V7in. The maximum volume is

V(10 — 2V7) = 640 + 4487 ~ 1825 in.> as shown in the following graph.

V(x)

20001 Maximum volume is approximately

1825 cubic inches when x = 4.7 inches

1750+
1500+ V(x) = 4x3 — 120x? + 864x
1250+
10001
7501
500+

250+

2 -10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16X
~2501

Figure 4.65 Maximizing the volume of the box leads to finding the maximum value of a
cubic polynomial.

@ Watch a video (http:/lwww.openstax.org/l/20_boxvolume) about optimizing the volume of a box.

4.32 Suppose the dimensions of the cardboard in Example 4.33 are 20 in. by 30 in. Let x be the side length
of each square and write the volume of the open-top box as a function of x. Determine the domain of
consideration for x.

Example 4.34

Minimizing Travel Time

An island is 2 mi due north of its closest point along a straight shoreline. A visitor is staying at a cabin on the
shore that is 6 mi west of that point. The visitor is planning to go from the cabin to the island. Suppose the
visitor runs at a rate of 8 mph and swims at a rate of 3 mph. How far should the visitor run before swimming

to minimize the time it takes to reach the island?

Solution
Step 1: Let x be the distance running and let y be the distance swimming (Figure 4.66). Let T be the time it

takes to get from the cabin to the island.
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X miles —————{«—6 — x miles —|

6 miles >

Figure 4.66 How can we choose x and y to minimize the travel time from

the cabin to the island?

Step 2: The problem is to minimize 7.

Step 3: To find the time spent traveling from the cabin to the island, add the time spent running and the time spent

swimming. Since Distance = Rate X Time (D = RX T), the time spent running is
T _ D running _ x
running — R -

running

and the time spent swimming is

T _ Dswimming _y
swimming — R, 7
swimming
Therefore, the total time spent traveling is
T=%412
s 13

Step 4: From Figure 4.66, the line segment of y miles forms the hypotenuse of a right triangle with legs

of length 2mi and 6 — xmi. Therefore, by the Pythagorean theorem, 224 6 - x)2 = y2, and we obtain

y =1(6 — x)* + 4. Thus, the total time spent traveling is given by the function

T =%+ 0=0 44 ;‘)2 +4

Step 5: From Figure 4.66, we see that 0 < x < 6. Therefore, [0, 6] is the domain of consideration.

Step 6: Since T'(x) is a continuous function over a closed, bounded interval, it has a maximum and a minimum.

Let’s begin by looking for any critical points of T over the interval [0, 6]. The derivative is

o1 16— +4] _1 (6-x
T (x)—g—jf-2(6—x)—§—3—,m.

If T"(x) =0, then
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1_ 6—x
8 36—n?+a
Therefore,

36— 1) +4=8(6-x). (4.6)
Squaring both sides of this equation, we see that if x satisfies this equation, then x must satisfy

9[(6 = x)? +4] =646 - 02,
which implies

55(6 — x)* = 36.

We conclude that if x is a critical point, then x satisfies

—6)2=36
x—=6)"= 55"
Therefore, the possibilities for critical points are
6
X =6+—=.
V55

Since x =6+ 6/55 is not in the domain, it is not a possibility for a critical point. On the other hand,
x =6 — 6/Y55 is in the domain. Since we squared both sides of Equation 4.6 to arrive at the possible critical
points, it remains to verify that x = 6 — 6/V/55 satisfies Equation 4.6. Since x = 6 — 6/Y/55 does satisfy that

equation, we conclude that x = 6 — 6/Y/55 is a critical point, and it is the only one. To justify that the time is
minimized for this value of x, we just need to check the values of T'(x) at the endpoints x =0 and x = 6,

and compare them with the value of T(x) at the critical point x = 6 — 6/V55. We find that 7(0) ~ 2.108 h
and T(6) ~ 1.417 h, whereas T(6 - 6/\/5) ~ 1.368 h. Therefore, we conclude that 7 has a local minimum at

X~ 5.19 mi.

4.33 Suppose the island is 1 mi from shore, and the distance from the cabin to the point on the shore closest
to the island is 15 mi. Suppose a visitor swims at the rate of 2.5 mph and runs at a rate of 6 mph. Let x

denote the distance the visitor will run before swimming, and find a function for the time it takes the visitor to
get from the cabin to the island.

In business, companies are interested in maximizing revenue. In the following example, we consider a scenario in which a
company has collected data on how many cars it is able to lease, depending on the price it charges its customers to rent a
car. Let’s use these data to determine the price the company should charge to maximize the amount of money it brings in.

Example 4.35

Maximizing Revenue

Owners of a car rental company have determined that if they charge customers p dollars per day to rent a

car, where 50 < p <200, the number of cars n they rent per day can be modeled by the linear function
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n(p) = 1000 — 5p. If they charge $50 per day or less, they will rent all their cars. If they charge $200 per

day or more, they will not rent any cars. Assuming the owners plan to charge customers between $50 per day and
$200 per day to rent a car, how much should they charge to maximize their revenue?

Solution

Step 1: Let p be the price charged per car per day and let n be the number of cars rented per day. Let R be the
revenue per day.

Step 2: The problem is to maximize R.

Step 3: The revenue (per day) is equal to the number of cars rented per day times the price charged per car per
day—that is, R =n X p.

Step 4: Since the number of cars rented per day is modeled by the linear function n(p) = 1000 — 5p, the

revenue R can be represented by the function
R(p) = nx p = (1000 — 5p)p = —=5p> + 1000p.

Step 5: Since the owners plan to charge between $50 per car per day and $200 per car per day, the problem is
to find the maximum revenue R(p) for p in the closed interval [50, 200].

Step 6: Since R is a continuous function over the closed, bounded interval [50, 200], it has an absolute

maximum (and an absolute minimum) in that interval. To find the maximum value, look for critical points.
The derivative is R’(p) = —10p + 1000. Therefore, the critical point is p =100 When p = 100,

R(100) = $50,000. When p =50, R(p) = $37,500. When p =200, R(p) = $0. Therefore, the absolute
maximum occurs at p = $100. The car rental company should charge $100 per day per car to maximize
revenue as shown in the following figure.

Maximum revenue is $50,000 per day when the
R(p) price charged per car is $100 per day
50000 -

40000 +
30000 +
20000 +

10000 +

0 20 40 60 80 100 120 140 160 180 200 220P
Figure 4.67 To maximize revenue, a car rental company has to
balance the price of a rental against the number of cars people
will rent at that price.

4.34 A car rental company charges its customers p dollars per day, where 60 < p < 150. It has found that
the number of cars rented per day can be modeled by the linear function n(p) = 750 — 5p. How much should

the company charge each customer to maximize revenue?

Example 4.36
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Maximizing the Area of an Inscribed Rectangle

A rectangle is to be inscribed in the ellipse

2
X 2 _
4+y =1

What should the dimensions of the rectangle be to maximize its area? What is the maximum area?

Solution

Step 1: For a rectangle to be inscribed in the ellipse, the sides of the rectangle must be parallel to the axes. Let L
be the length of the rectangle and W be its width. Let A be the area of the rectangle.

y
% } y2 =1

L (X, y)

w

Figure 4.68 We want to maximize the area of a rectangle inscribed in an
ellipse.

Step 2: The problem is to maximize A.
Step 3: The area of the rectangle is A = LW.

Step 4: Let (x, y) be the corner of the rectangle that lies in the first quadrant, as shown in Figure 4.68. We can

2 2
write length L = 2x and width W = 2y. Since XT +y?=1 and y>0, wehave y=1|1- XT Therefore,

the area is
2
A=LW = (Q2x)(2y) = 4x|1 - =24 - x2.

Step 5: From Figure 4.68, we see that to inscribe a rectangle in the ellipse, the x -coordinate of the corner in
the first quadrant must satisfy 0 < x < 2. Therefore, the problem reduces to looking for the maximum value of
A(x) over the open interval (0, 2). Since A(x) will have an absolute maximum (and absolute minimum) over
the closed interval [0, 2], we consider A(x) = 2xV4 — x2 over the interval [0, 2]. If the absolute maximum
occurs at an interior point, then we have found an absolute maximum in the open interval.

Step 6: As mentioned earlier, A(x) is a continuous function over the closed, bounded interval [0, 2]. Therefore,
it has an absolute maximum (and absolute minimum). At the endpoints x =0 and x =2, A(x)=0. For
0<x<2, A(x)>0. Therefore, the maximum must occur at a critical point. Taking the derivative of A(x),

we obtain
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A(x) =2V4—x2 20— (—2v)
24 — x?

=2V4 — 2o

4 — x?

o]

—4x2.
4 — x?

To find critical points, we need to find where A’(x) = 0. We can see that if x is a solution of

V4 — x?

8 —4x2 _ 0. 4.7)

then x must satisfy
8 —4x2=0.
Therefore, x2=2. Thus, x = +V2 are the possible solutions of Equation 4.7. Since we are considering x

over the interval [0, 2], x=1V2 isa possibility for a critical point, but x = —V2 is not. Therefore, we check

whether V2 is a solution of Equation 4.7. Since x = V2 is a solution of Equation 4.7, we conclude that V2
is the only critical point of A(x) in the interval [0, 2]. Therefore, A(x) must have an absolute maximum at the

critical point x = V2. To determine the dimensions of the rectangle, we need to find the length L and the width

W. If x =%2 then
— (v2) — A 1_1
y= 1 =1/1 _\/7'

Therefore, the dimensions of the rectangle are L =2x=2V2 and W =2y = % ="2. The area of this

rectangle is A = LW = (2V2)(\2) = 4.

4.35 Modify the area function A if the rectangle is to be inscribed in the unit circle X2+ y2 = 1. What is the

domain of consideration?

Solving Optimization Problems when the Interval Is Not Closed or Is
Unbounded

In the previous examples, we considered functions on closed, bounded domains. Consequently, by the extreme value
theorem, we were guaranteed that the functions had absolute extrema. Let’s now consider functions for which the domain
is neither closed nor bounded.

Many functions still have at least one absolute extrema, even if the domain is not closed or the domain is unbounded. For
example, the function f(x) = x2+4 over (—0o0, 00) has an absolute minimum of 4 at x = 0. Therefore, we can still

consider functions over unbounded domains or open intervals and determine whether they have any absolute extrema. In
the next example, we try to minimize a function over an unbounded domain. We will see that, although the domain of
consideration is (0, oo), the function has an absolute minimum.

In the following example, we look at constructing a box of least surface area with a prescribed volume. It is not difficult to
show that for a closed-top box, by symmetry, among all boxes with a specified volume, a cube will have the smallest surface
area. Consequently, we consider the modified problem of determining which open-topped box with a specified volume has
the smallest surface area.
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Example 4.37

Minimizing Surface Area

A rectangular box with a square base, an open top, and a volume of 216 in.? is to be constructed. What should
the dimensions of the box be to minimize the surface area of the box? What is the minimum surface area?

Solution

Step 1: Draw a rectangular box and introduce the variable x to represent the length of each side of the square
base; let y represent the height of the box. Let S denote the surface area of the open-top box.

X

X
Figure 4.69 We want to minimize the surface area of a
square-based box with a given volume.

Step 2: We need to minimize the surface area. Therefore, we need to minimize S.

Step 3: Since the box has an open top, we need only determine the area of the four vertical sides and the base.
The area of each of the four vertical sides is x-y. The area of the base is x2. Therefore, the surface area of the

box is

S = 4xy+x2.

Step 4: Since the volume of this box is x2 y and the volume is given as 216 in.3, the constraint equation is

x?y=216.
Solving the constraint equation for y, we have y = % Therefore, we can write the surface area as a function
X

of x only:

S(x) = 4x(%) +x%
X

Therefore, S(x) = % +x2,

Step 5: Since we are requiring that x2y =216, we cannot have x = 0. Therefore, we need x > 0. On the
other hand, x is allowed to have any positive value. Note that as x becomes large, the height of the box
y becomes correspondingly small so that x2y = 216. Similarly, as x becomes small, the height of the box
becomes correspondingly large. We conclude that the domain is the open, unbounded interval (0, c0). Note that,

unlike the previous examples, we cannot reduce our problem to looking for an absolute maximum or absolute
minimum over a closed, bounded interval. However, in the next step, we discover why this function must have an
absolute minimum over the interval (0, o).

Step 6: Note that as x — 0%, S(x) > . Also, as x » o0, S(x) > oco. Since S is a continuous function
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that approaches infinity at the ends, it must have an absolute minimum at some x € (0, c0). This minimum must

occur at a critical point of S. The derivative is

s’ = -86 10
X

Therefore, §’(x) =0 when 2x=%. Solving this equation for x, we obtain ¥’ =432, so
X

3 3 3
x = V432 = 612. Since this is the only critical point of S, the absolute minimum must occur at x = 6V2

(see Figure 4.70). When x = 6%/5, y= L62 = 3%/5in. Therefore, the dimensions of the box should be
3
(¢2)

3. 35
x=6V2in. and y = 3V2in. With these dimensions, the surface area is

(6«F ) 864 (mf ) — 10814 in.2

612
S(x)
e S(x) # + X2
500+

4001
300+

200+

| Minimum surface area of 10834 square inches
100 S
when x = 632 inches

0 5 10 15 20 25 X
Figure 4.70 We can use a graph to determine the dimensions
of a box of given the volume and the minimum surface area.

@ 4.36  Consider the same open-top box, which is to have volume 216 i in.3 . Suppose the cost of the material for
the base is 20 ¢ /in.2 and the cost of the material for the sides is 30 ¢ /in.2 and we are trying to minimize the

cost of this box. Write the cost as a function of the side lengths of the base. (Let x be the side length of the base
and y be the height of the box.)

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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4.7 EXERCISES

For the following exercises,
counterexample, or explanation.

answer by proof,

311. When you find the maximum for an optimization
problem, why do you need to check the sign of the
derivative around the critical points?

312. Why do you need to check the endpoints for
optimization problems?

313. True or False. For every continuous nonlinear
function, you can find the value x that maximizes the

function.

314. True or False. For every continuous nonconstant
function on a closed, finite domain, there exists at least one
x that minimizes or maximizes the function.

For the following exercises, set up and evaluate each
optimization problem.

315. To carry a suitcase on an airplane, the length
+width + height of the box must be less than or equal

to 62in. Assuming the height is fixed, show that the
1 2

maximum volume is V = h(31 - (f)h) . What height

allows you to have the largest volume?

316. You are constructing a cardboard box with the
dimensions 2 m by 4 m. You then cut equal-size squares

from each corner so you may fold the edges. What are the
dimensions of the box with the largest volume?

N

| : |

317. Find the positive integer that minimizes the sum of
the number and its reciprocal.

318. Find two positive integers such that their sum is 10,

and minimize and maximize the sum of their squares.

For the following exercises, consider the construction of a
pen to enclose an area.

319. You have 400 ft

rectangular pen for cattle. What are the dimensions of the
pen that maximize the area?

of fencing to construct a

451

320. You have 800 ft of fencing to make a pen for hogs.

If you have a river on one side of your property, what is the
dimension of the rectangular pen that maximizes the area?

321. You need to construct a fence around an area of
1600 ft. What are the dimensions of the rectangular pen to

minimize the amount of material needed?

322. Two poles are connected by a wire that is also
connected to the ground. The first pole is 20 ft tall and

the second pole is 10 ft tall. There is a distance of 30 ft

between the two poles. Where should the wire be anchored
to the ground to minimize the amount of wire needed?

30

323. [T] You are moving into a new apartment and notice
there is a corner where the hallway narrows from
8 ft to 6 ft. What is the length of the longest item that can

be carried horizontally around the corner?

324, A patient’s pulse
70 bpm, 80 bpm, then 120 bpm.  To

accurate measurement of pulse, the doctor wants to know
what value minimizes the expression

(x—70)2 + (x — 80)2 + (x — 120)2?  What

minimizes it?

measures
determine  an

value
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325. In the previous problem, assume the patient was
nervous during the third measurement, so we only weight
that value half as much as the others. What is the value that

minimizes (x — 70)% + (x — 80)% + %(x —120)2?

326. You canrun at a speed of 6 mph and swim at a speed
of 3 mph and are located on the shore, 4 miles east of
an island that is 1 mile north of the shoreline. How far

should you run west to minimize the time needed to reach
the island?
Island

You

For the following problems, consider a lifeguard at a
circular pool with diameter 40 m. He must reach someone

who is drowning on the exact opposite side of the pool, at
position C. The lifeguard swims with a speed v and runs

around the pool at speed w = 3v.

327. Find a function that measures the total amount of
time it takes to reach the drowning person as a function of
the swim angle, 6.

328. Find at what angle @ the lifeguard should swim to
reach the drowning person in the least amount of time.

329. A truck uses gas as g(v) =av+%, where v
represents the speed of the truck and g represents the
gallons of fuel per mile. At what speed is fuel consumption
minimized?

For the following exercises, consider a limousine that gets

(120 = 2v)
5

m(v) = mi/gal at speed v, the chauffeur

costs $15/h, and gasis $3.5/gal.

330. Find the cost per mile at speed v.

331. Find the cheapest driving speed.

For the following exercises, consider a pizzeria that sell

Chapter 4 | Applications of Derivatives

pizzas for a revenue of R(x)=ax and costs
Cx)=b+cx+ dx?, where x represents the number of
pizzas.

332. Find the profit function for the number of pizzas.

How many pizzas gives the largest profit per pizza?

333. Assume that R(x)=10x and C(x)=2x+x%
How many pizzas sold maximizes the profit?

334. Assume that
C(x) = 60+ 3x + 1.
maximizes the profit?

R(x) = 15z, and
How many pizzas sold

For the following exercises, consider a wire 4 ft long cut
into two pieces. One piece forms a circle with radius » and
the other forms a square of side x.

335. Choose x to maximize the sum of their areas.
336. Choose x to minimize the sum of their areas.

For the following exercises, consider two nonnegative
numbers x and y such that x +y = 10. Maximize and

minimize the quantities.

337. xy
338. x2y?
339. y-1
340. x2-—y

For the following exercises, draw the given optimization
problem and solve.

341. Find the volume of the largest right circular cylinder
that fits in a sphere of radius 1.

342. Find the volume of the largest right cone that fits in a
sphere of radius 1.

343. Find the area of the largest rectangle that fits into the
triangle with sides x =0, y = 0 and % + % =1.

344. Find the largest volume of a cylinder that fits into a
cone that has base radius R and height A.

345. Find the dimensions of the closed cylinder volume
V = 167 that has the least amount of surface area.

346. Find the dimensions of a right cone with surface area
S = 4z that has the largest volume.
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Chapter 4 | Applications of Derivatives

For the following exercises, consider the points on the
given graphs. Use a calculator to graph the functions.
347. [T] Where is the line y =15 —2x closest to the

origin?

348. [T] Where is the line y =5 — 2x closest to point
1, DH?

349. [T] Where is the parabola y = x% closest to point
(2,07

350. [T] Where is the parabola y = x% closest to point
0, 3)?

For the following exercises, set up, but do not evaluate,
each optimization problem.

351. A window is composed of a semicircle placed on
top of a rectangle. If you have 20 ft of window-framing

materials for the outer frame, what is the maximum size of
the window you can create? Use r to represent the radius

of the semicircle.

352. You have a garden row of 20 watermelon plants
that produce an average of 30 watermelons apiece. For

any additional watermelon plants planted, the output per
watermelon plant drops by one watermelon. How many
extra watermelon plants should you plant?

453

353. You are constructing a box for your cat to sleep in.
The plush material for the square bottom of the box costs

$5/ft> and the material for the sides costs $2/ft>. You
need a box with volume 4 ft2. Find the dimensions of the

box that minimize cost. Use x to represent the length of the
side of the box.

354. You are building five identical pens adjacent to each
other with a total area of 1000 mz, as shown in the

following figure. What dimensions should you use to
minimize the amount of fencing?

C

355. You are the manager of an apartment complex with
50 units. When you set rent at $800/month, all

apartments are rented. As you increase rent by
$25/month, one fewer apartment is rented. Maintenance

costs run $50/month for each occupied unit. What is the
rent that maximizes the total amount of profit?
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4.8 | L'Hopital’s Rule

Learning Objectives

4.8.1 Recognize when to apply L'Hépital’s rule.

4.8.2 Identify indeterminate forms produced by quotients, products, subtractions, and powers,
and apply L'Hépital’s rule in each case.

4.8.3 Describe the relative growth rates of functions.

In this section, we examine a powerful tool for evaluating limits. This tool, known as L’Hopital’s rule, uses derivatives to
calculate limits. With this rule, we will be able to evaluate many limits we have not yet been able to determine. Instead of
relying on numerical evidence to conjecture that a limit exists, we will be able to show definitively that a limit exists and to
determine its exact value.

Applying L’'Hopital’s Rule

L’Hopital’s rule can be used to evaluate limits involving the quotient of two functions. Consider

m L&
= ag(x)'
If xli_I)na f(x) =L, and xli_r)nag(x) =L, #0, then
f@ _ Ly
X—a g( _x) L2 :
However, what happens if xli_l)na f(x) =0 and xli_ngg(x) = 0? We call this one of the indeterminate forms, of type %

This is considered an indeterminate form because we cannot determine the exact behavior of % as x — a without

(x)

further analysis. We have seen examples of this earlier in the text. For example, consider

hm 4 and hm sinx,
X — - 2 >0 X

For the first of these examples, we can evaluate the limit by factoring the numerator and writing

lim X2=4 = Jim EEDO=D _ i 1) =242=4,
x—>2X— x—>2 x—2 x—2
For hmOSlgx we were able to show, using a geometric argument, that
X =
lim SIDX = 1.
X =

Here we use a different technique for evaluating limits such as these. Not only does this technique provide an easier way to
evaluate these limits, but also, and more important, it provides us with a way to evaluate many other limits that we could
not calculate previously.

The idea behind L’Hépital’s rule can be explained using local linear approximations. Consider two differentiable functions
f and g such that xli_r)na fx)=0= Xlgnag(x) and such that g’(a) # 0 For x near a, we can write

J@) = fla) + f (@)(x - a)
and

) = g(a) + ¢’ (A)(x — a).
Therefore,

J& @+ f (@ =a)
80 T gl@+g (@x—a)
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y =f(x)

y = f(a) + f(@)x — a)

a
Figure 4.71 If xli_r)na fx) = xli_r)nag(x), then the ratio f(x)/g(x) is

approximately equal to the ratio of their linear approximations near a.

Since f is differentiable at @, then f is continuous at a, and therefore f(a)= xli_I)na f(x) =0. Similarly,
gla) = Xlgnag(x) = 0. If we also assume that f’ and g’ are continuous at x =a, then f'(a)= Xlgna f'(x) and
g (a) = xlgnag’ (x). Using these ideas, we conclude that

i L@ _ e f@OGE— W

P agl)  xag (X —a) xag (x)

Note that the assumption that f’ and g’ are continuous at a and g’(a) # 0 can be loosened. We state L’Hdpital’s rule

formally for the indeterminate form 0 Also note that the notation 2 does not mean we are actually dividing zero by zero.

0 0

Rather, we are using the notation 04 represent a quotient of limits, each of which is zero.

0

Theorem 4.12: L’Hopital’s Rule (0/0 Case)

Suppose f and g are differentiable functions over an open interval containing @, except possibly at a. If
xli_r)ng f(x) =0 and xli_I)nag(x) =0, then
@ f

xh—I>nag(x) T X ag’(x)’

assuming the limit on the right exists or is co or —oo. This result also holds if we are considering one-sided limits,
orif a = o0 and — .

Proof
We provide a proof of this theorem in the special case when f, g, f', and g’ are all continuous over an open

interval containing a. In that case, since xli_r)na fx)=0= xlgrlag(x) and f and g are continuous at a, it follows that

f(a) = 0 = g(a). Therefore,
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m L&
X —> ag(x)

J&) = fla)

_ f(@
X = ag(x)

g@)
[ - f@
X—a

=@
X—a

I&) - fl@)
P e
B W — g@

Aim =g

_ @
g (@)

lim f " (x)

hm g’ (x)

i L@
~ g
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since f(a) = 0 = g(a)

algebra

limit of a quotient

definition of the derivative

continuity of f’ and g’

limit of a quotient

Note that L’Hopital’s rule states we can calculate the limit of a quotient % by considering the limit of the quotient of the

’

derivatives ? It is important to realize that we are not calculating the derivative of the quotient

O

£
7

Example 4.38

Applying L’Hépital’s Rule (0/0 Case)

a  lim 1 —cosx
T x>0 x
b, lim sin(zx)
’ x—=1 lnx
1/x
et —1
C. xll>moo—]/x
d  lim sinx — x
x—=0 x
Solution

evaluate this limit. We have

lim 1-— cosx

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12

Evaluate each of the following limits by applying L’Hopital’s rule.

a. Since the numerator 1 —cosx — 0 and the denominator x — 0, we can apply L’Hopital’s rule to

%(1 — CoSXx)
()

smx

x—0

lim
x—0
lim (sinx)
x—0
li 1
xl—r>n0( )

0_
=0
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b. As x — 1, the numerator sin(zx) - 0 and the denominator In(x) — 0. Therefore, we can apply
L’Hopital’s rule. We obtain

lim sin(7zx) - & 7 cos(mx)
x—1 Inx x—1 1/x
= lim (zx)cos(zx)
x—1
=(@x-D)(-1)=—-nx.

1/x 1

— 1 — 0 and the denominator (—) — 0. Therefore, we can apply

X
1/x[=1
1/x ¢ (_2)
lim € =1 jim — M7 iy M= 02,

X' = 00 1 T x5 ® (1) X = 00
X =1

c. As x — oo, the numerator e

L’Hopital’s rule. We obtain

2

d. As x — 0, both the numerator and denominator approach zero. Therefore, we can apply L’Hdpital’s

rule. We obtain

lim SIDX =X _ 1jy cosx—1
x—=>0 5 x>0 2x

Since the numerator and denominator of this new quotient both approach zero as x — 0, we apply

L’Hopital’s rule again. In doing so, we see that

lim cosx—1 = lim —Simx _ 0.
x—0 X x—

Therefore, we conclude that

lim sinx — x =0
x—=0 xZ ’
@ 437 Evaluate lim —X—
x — otanx
JAC))

We can also use L’Hopital’s rule to evaluate limits of quotients in which f(x) - +o0o and g(x) - +o0. Limits of

g)
this form are classified as indeterminate forms of type oo/co. Again, note that we are not actually dividing oo by oo.

Since oo is not a real number, that is impossible; rather, co/co. is used to represent a quotient of limits, each of which is
00 or —oo.

Theorem 4.13: L’Hopital’s Rule (co/co Case)

Suppose f and g are differentiable functions over an open interval containing a, except possibly at a. Suppose

xli_r}naf(x) = oo (or —oo) and xli_r}nag(x) = 0o (or —oo). Then,

i L0 _ i 100
Mgl = Mg (o

assuming the limit on the right exists or is oo or —oo. This result also holds if the limit is infinite, if a = oo or
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—o0, or the limit is one-sided.

Example 4.39

Applying L'Hépital’s Rule (/0 Case)

Evaluate each of the following limits by applying L’Hépital’s rule.

- 3x+5
a leHOOZx +1
b.  lim J0X
cotx
x—=0
Solution

a. Since 3x+5 and 2x+1 are first-degree polynomials with positive leading coefficients,
lemw(3x +5) =00 and lemw(Zx + 1) = oo. Therefore, we apply L’Hépital’s rule and obtain

: 3x+5 _
lemm2x+ 1/ x x>2

Note that this limit can also be calculated without invoking L’Hopital’s rule. Earlier in the chapter we
showed how to evaluate such a limit by dividing the numerator and denominator by the highest power of
x in the denominator. In doing so, we saw that

lim 3x+5 _ iy 3+5/&x _3
x—>02x+1 x->002x+1/x 27

L’Hopital’s rule provides us with an alternative means of evaluating this type of limit.

b. Here, lim Inx=—oco0 and lim cotx = co. Therefore, we can apply L’Hépital’s rule and obtain
x—0 x—0
lim DX = pim X — pjpy 1
- 0T GO ot —cse?x x— 0T —xescx

Now as x — 07, csc?x — oo. Therefore, the first term in the denominator is approaching zero and

the second term is getting really large. In such a case, anything can happen with the product. Therefore,
we cannot make any conclusion yet. To evaluate the limit, we use the definition of cscx to write

sinZx

lim —L — = lim
x—>0+—xCSC X x—0

Now lim sin?x=0 and lim x= 0, so we apply L’Hépital’s rule again. We find

x—0 x—0
in’ 2si 0
lim SIE X _ lim SIxcosx _ YV _ 0.
x—0 x—0t -1 -1

We conclude that

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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@ 438 gyaluate lim 10X
x =00 5x

As mentioned, L"Ho6pital’s rule is an extremely useful tool for evaluating limits. It is important to remember, however, that

fx) S 0

it is essential that the limit of be of the form = or co/co. Consider

to apply L’Hopital’s rule to a quotient X
ppLy - HoP 1 g() ) 0

the following example.

Example 4.40

When L’Hépital’s Rule Does Not Apply

2245
13x+4

Consider lim . Show that the limit cannot be evaluated by applying L’Hopital’s rule.
X =

Solution

Because the limits of the numerator and denominator are not both zero and are not both infinite, we cannot apply
L’Hopital’s rule. If we try to do so, we get

%(xz + 5) =2x

and

d =
dx(3x +4)=3.

At which point we would conclude erroneously that

2
o X“+S5 o 2x 2
Jim g = I =15

However, since lirnl(x2 + 5) =6 and 1im1(3x +4) =7, we actually have
X — X =

2
L ox“+5_6
Jm =T

We can conclude that

d(.2
2 L{x“+5
lim 2+ = limM.
x=>13x+4 7 x514d35 4 9)
dx

: Y ARitA]? i COSX . COsx
@ 4.39 Explain why we cannot apply L’Hdpital’s rule to evaluate hm+ == Evaluate 11m+ === by other

x—=0 x—=0

means.

Other Indeterminate Forms

L’Hopital’s rule is very useful for evaluating limits involving the indeterminate forms 0 and co/co. However, we can

0

also use L’Hopital’s rule to help evaluate limits involving other indeterminate forms that arise when evaluating limits. The
1 DO, 0

expressions 0-co, o0 — o0, oo, and 0 are all considered indeterminate forms. These expressions are not

real numbers. Rather, they represent forms that arise when trying to evaluate certain limits. Next we realize why these are
indeterminate forms and then understand how to use L’Hopital’s rule in these cases. The key idea is that we must rewrite
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0

the indeterminate forms in such a way that we arrive at the indeterminate form = or oo/co.

0
Indeterminate Form of Type 0- o
Suppose we want to evaluate xli_rpa(f(x) -g(x)), where f(x) - 0 and g(x) > oo (or —c0) as x — a. Since one term

in the product is approaching zero but the other term is becoming arbitrarily large (in magnitude), anything can happen to
the product. We use the notation 0- oo to denote the form that arises in this situation. The expression 0- oo is considered

indeterminate because we cannot determine without further analysis the exact behavior of the product f(x)g(x) as x — a.

For example, let n be a positive integer and consider

fx) = and g(x) = 3x”.

1
" +1)

3x2
x"+1)

If n =2, then xli)moof(x)g(x) =3.If n=1, then xli)moof(x)g(x) =o0. If n =3, then Xli}moof(x)g(x) = (. Here we

As x - 00, f(x) > 0 and g(x) —» oo. However, the limitas x — oo of f(x)g(x) = varies, depending on 7.

consider another limit involving the indeterminate form 0-oco and show how to rewrite the function as a quotient to use
L’Hopital’s rule.

Example 4.41

Indeterminate Form of Type 0-

Evaluate lim xInx.
x—0

Solution

First, rewrite the function xIlnx as a quotient to apply L’Hopital’s rule. If we write

= lnx
xlnx = e
we see that Inx - —o0 as x — 01 and % — o0 as x — 07 Therefore, we can apply L’Hépital’s rule and
obtain
L(Inx
lim 10X — i 200 lix

= = = lim (—x)=0.
x—>0+ 1/x x—>0+ %(1/)0 x—>0+ -1/.X2 x—>0+
We conclude that

lim xInx=0.
x—=0
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o

y = xInx

_2._

Figure 4.72 Finding the limit at x = 0 of the function
f(x) = xlnx.

4.40 Evaluate lim xcotx.
x—0

Indeterminate Form of Type oo — oo

Another type of indeterminate form is co — co. Consider the following example. Let n be a positive integer and let
f(x) =3x" and g(x) =3x>+5. As x > 00, f(x) = oo and g(x) — 0. We are interested in xli)moo(f(x) —g)).
Depending on whether f(x) grows faster, g(x) grows faster, or they grow at the same rate, as we see next, anything can

happen in this limit. Since f(x) — co and g(x) — oo, we write co — oo to denote the form of this limit. As with our

other indeterminate forms, co — co has no meaning on its own and we must do more analysis to determine the value of the

limit. For example, suppose the exponent 7 in the function f(x) = 3x" is n =3, then
. 4 3 2 _
xll)moo(f(x) —glx)= xll)moo(f%x —3x° - 5) = oo.
On the other hand, if n» =2, then
. T 2 2.2 2\_ _
im (F() = g(0) = _lim (3x% = 3x* = 5) = 5.
However, if n =1, then
xll)moo(f(x) —glx)= xll)mm(3x —3x° - 5) = —o0.

Therefore, the limit cannot be determined by considering only co — co. Next we see how to rewrite an expression involving
the indeterminate form oo — oo as a fraction to apply L’Hdpital’s rule.

Example 4.42

Indeterminate Form of Type o —
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Evaluate lim (L— 1 )
oot x2 tanx

Solution
By combining the fractions, we can write the function as a quotient. Since the least common denominator is

x2 tanx, we have

2

1 1 _ (tanx)—x
2 tanx ~

xztanx

As x — 0", the numerator tanx— x> — 0 and the denominator x>tanx — 0. Therefore, we can apply

L’Hopital’s rule. Taking the derivatives of the numerator and the denominator, we have

— 52 sec?x)— 2x
PNCTEES GO L) e

x— 0T xZtanx x— 0T x2sec?x + 2xtanx

As x— 0T, (seczx) —2x > 1 and x?sec?x+2xtanx — 0. Since the denominator is positive as x
approaches zero from the right, we conclude that
) (S602 x) —2x
x— 0T x“sec”x + 2xtanx

Therefore,

4.41 : 1__1
@ Evaluate R 1_1)118_'_ ( x sinx)'

Another type of indeterminate form that arises when evaluating limits involves exponents. The expressions 00, ooo, and

1 are all indeterminate forms. On their own, these expressions are meaningless because we cannot actually evaluate these

expressions as we would evaluate an expression involving real numbers. Rather, these expressions represent forms that arise
when finding limits. Now we examine how L’Hdpital’s rule can be used to evaluate limits involving these indeterminate
forms.

Since L’Hopital’s rule applies to quotients, we use the natural logarithm function and its properties to reduce a problem
evaluating a limit involving exponents to a related problem involving a limit of a quotient. For example, suppose we want

to evaluate xli_r)na f(x)g(x) and we arrive at the indeterminate form oo’. (The indeterminate forms 0% and 1% can be

handled similarly.) We proceed as follows. Let

y =

Then,
ny = In(f(0)*") = gin(f (o)

Therefore,
Jim[InG)] = Jim [gin(f (o)}

Since xli_IpG f(x) = 00, we know that xli_I;naln(f(X)) = 0o. Therefore, xli_r)nag(x)ln( f(x)) is of the indeterminate form
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0-oco0, and we can use the techniques discussed earlier to rewrite the expression g(x)In(f(x)) in a form so that we can
apply L’Hépital’s rule. Suppose xlgnag(x)ln(f(x)) =L, where L maybe oo or —oco. Then
Jim [In)] = L.
Since the natural logarithm function is continuous, we conclude that
ln(xli—rpay ) =L
which gives us

. T g _ L
xh—I>nay - xh—r>naf ) =en

Example 4.43

Indeterminate Form of Type
Evaluate lim x!/*.
X — 0
Solution
Let y = " Then,
ln(xllx) = %lnx = lnTx

Inx

We need to evaluate lemw - Applying L’Hopital’s rule, we obtain

1/x

Inx _ ;0 1/x _
= im e =0

lim Iny = lim
X = 00 X = 0
Therefore, lemwln y = 0. Since the natural logarithm function is continuous, we conclude that

In(_lim_y) =0,
which leads to
. _ o Inx _ 0 _
lemwy = lemw - =e =1
Hence,

lim x'"* = 1.
X — 0

@ 442 pyaluate lim xllln(x).
X — 0

Example 4.44

Indeterminate Form of Type 0°
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Evaluate lim x*™%
x—-0
Solution
Let
y= xsinx
Therefore,
Iny = ]n(xsmx) = sinxInx.

We now evaluate lim sinxInx. Since lim sinx=0 and lim Inx = —co, we have the indeterminate

x—-0 x—=0 x—-0

form 0-oco. To apply L’Hdpital’s rule, we need to rewrite sinxInx as a fraction. We could write
sinxlnx = ==

or

Inx _ Inx
1/sinx ~ €SCX

sinxlnx =

Let’s consider the first option. In this case, applying L’Hopital’s rule, we would obtain

lim sinxlnx = lim X = |j;m —COSX _ _—  |jp (—x(lnx)zcosx).

= lim
x—-ot x—ot VInx x—ot —1/(x(1nx)2) x—=ot

Unfortunately, we not only have another expression involving the indeterminate form 0- oo, but the new limit
is even more complicated to evaluate than the one with which we started. Instead, we try the second option. By
writing

Inx _ Inx
1/sinx — €scx?

sinxlnx =

and applying L’Hopital’s rule, we obtain

lim sinxlnx = lim clélc)gc = lim —csc%cxcotx = lim xcsc_xlcotx‘
x—=0 x—0F x—0t x—0F

Using the fact that cscx = $ and cotx = (;?nsjcc , we can rewrite the expression on the right-hand side as

.2 . .
s =sin“x _ sinx , (_ | 1 sinx).[ 1 _ —1.0=
x —>hn(}+ xeosx X l—1>n(;+ [ * ( tanx)] (x 1—1>I{)1+ * ) (X 1—1>I{)1+ ( taHX)) Ho=0

We conclude that 1irn+ Iny = 0. Therefore, ln(X lim+ y) = 0 and we have

x—-0 -0
lim y= lim x™=¢0=1.
x—=0 x—=0
Hence,
lim xS"¥ =1,
x— o0t

443 Evaluate lim x*
x—>0+
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Growth Rates of Functions

Suppose the functions f and g both approach infinity as x — oco. Although the values of both functions become
arbitrarily large as the values of x become sufficiently large, sometimes one function is growing more quickly than the

other. For example, f(x) = x% and gx) = x> both approach infinity as x — co. However, as shown in the following

table, the values of x> are growing much faster than the values of x2.

x 10 100 1000 10,000

f@ = x2 100 10,000 1,000,000 100,000,000

glx) = X3 1000 1,000,000 1,000,000,000 1,000,000,000,000

Table 4.7 Comparing the Growth Rates of x> and x°

In fact,

3 2
lim £ = lim_x = co. or, equivalently, lim £~ = lim 1_yo,
X X = o x = 00)63 X = 00X

2

As a result, we say s growing more rapidly than x%* as x — co. On the other hand, for f(x) =x" and

glx) = 3x% +4x + 1, although the values of g(x) are always greater than the values of f(x) for x > 0, each value of

g(x) is roughly three times the corresponding value of f(x) as x — oo, as shown in the following table. In fact,

2
lim —*— =

1
AR PR O R

x 10 100 1000 10,000

fx) = x? 100 10,000 1,000,000 100,000,000

gx) = 3x? +4x+1 341 30,401 3,004,001 300,040,001

Table 4.8 Comparing the Growth Rates of x% and 3x% +4x+1

In this case, we say that x% and 3x% +4x + 1 are growing at the same rate as x — oo.

More generally, suppose f and g are two functions that approach infinity as x — co. We say g grows more rapidly than

f as x — oo if

g . L f)
. Lmoo_f o~ co; or, equivalently, lim ) 0.
On the other hand, if there exists a constant M # 0 such that
tim L& =
X = o g( x) ’

wesay f and g grow at the same rate as x — 0.
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Next we see how to use L’Hopital’s rule to compare the growth rates of power, exponential, and logarithmic functions.

Example 4.45

Comparing the Growth Rates of In(x), x% and ¢*

For each of the following pairs of functions, use L’Hopital’s rule to evaluate _lim FAE) .
X = o g(_x)

a. f(x)=x?and g(x) = "

b. f(x) = In(x) and g(x) = x>

Solution

x2

2— 0 and lim e*= oo, we can use L’Hopital’s rule to evaluate lim [—x] We
X = 00 x =00 e

a. Since lim x
X — 0

obtain

Since lim 2x = oo and lim e = oo, we can apply L’Hopital’s rule again. Since
X — o0 X = 0

lim 2X = Jim 2 =0,
X = 00X X = 00

we conclude that
2
x° _
X —>moo e* =0.
Therefore, ¢* grows more rapidly than x% as x —> o (See Figure 4.73 and Table 4.9).

y
60t

501
40+
30+
20+

10+

01 3 5 4 b %
Figure 4.73 An exponential function grows at a faster rate
than a power function.
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x2 25 100 225 400

e* 148 22,026 3,269,017 485,165,195

Table 4.9
Growth rates of a power function and an exponential function.

b. Since lim Inx=oco0 and lim x> = oo, we can use L’Hopital’s rule to evaluate lim Inx e
X = X = 00 X = x2
obtain
lim 10X — i X — gy L
X' = 00 x2 X =00 2x x> 00n.2

Thus, x° grows more rapidly than Inx as x — oo (see Figure 4.74 and Table 4.10).

Y

g(x) = X

Figure 4.74 A power function grows at a faster rate than a
logarithmic function.

x 10 100 1000 10,000
In(x) 2.303 4.605 6.908 9.210
x2 100 10,000 1,000,000 100,000,000
Table 4.10

Growth rates of a power function and a logarithmic function
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@ 4.44  Compare the growth rates of x'® and 2*.

Using the same ideas as in Example 4.45a. it is not difficult to show that e® grows more rapidly than x? forany p > 0.

In Figure 4.75 and Table 4.11, we compare e* with %3 and x* as x — .

y y
140+ 7000+
y=¢e .
120+ y=x° 6000+
100+ 5000+
80+ 4000+
60+ 3000+
40+ 2000+
20+ 1000+
10 1 2 3 4 5 6 7X -1 0 1
—207 —1000+
(@) (b)

Figure 4.75 The exponential function e* grows faster than x” forany p > 0. (a) A comparison of e* with

x3. (b) A comparison of ¢* with x*.

x 5 10 15 20
% 125 1000 3375 8000
¥ 625 10,000 50,625 160,000

e* 148 22,026 3,269,017 485,165,195

Table 4.11 An exponential function grows at a faster rate than
any power function

Similarly, it is not difficult to show that x” grows more rapidly than Inx forany p > 0. In Figure 4.76 and Table 4.12,

we compare Inx with ¥x and V.

4
6+ y=x y =3x
4+ y =In(x)
24

O 20 40 60 80 100 120 140 160%
Figure 4.76 The function y = In(x) grows more slowly than

xP forany p >0 as x - co.
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x 10 100 1000 10,000
In(x) 2.303 4.605 6.908 9.210

Ve 2.154 4.642 10 21.544

VX 3.162 10 31.623 100

Table 4.12 A logarithmic function grows at a slower rate

than any root function
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4.8 EXERCISES

For the following exercises, evaluate the limit. 372, lim = 1
" x> 1sinx

X
356. Evaluate the limit lim <.
X — 0

373 lim M
T x>0 X
357. Evaluate the limit _li e—x.
x = ooxk n
374, lim U F0_—1-nx
T x>0 X2

358. Evaluate the limit lim 10X,

Am |
375. lim SlXx —tanx
T X0 X
359. Evaluate the limit lim £—=4_. 4 #0.
X = ax2 _ a2
376. lim WA +x=Vl-x
: x
360. Evaluate the limit lim £—=9_ 4 #£0. x=0
X = ax3 _ a3
X
377. lim &=%=1
361. Evaluate the limit lim X=4_ 4 #0. =0k
X — ax —a
78. 1i tanx
For the following exercises, determine whether you can 378 xl_r)no Vx
apply L’Hopital’s rule directly. Explain why or why not.
Then, indicate if there is some way you can alter the limit 379 im X£=1
so you can apply L’Hdpital’s rule. x—1 Inx
362.  lim x*Inx 380. lim (x+ 1)~
x—0 x—0
363 lim x!™ 381 lim =%
x>1x—1
. 2/x
x—0
365, lim - 1
© otk 383. lemwxsin(Y)
X .
366. xli)mooe? 384. lim SIX—x
x=0 x
For the following exercises, evaluate the limits with either ) 4
L’Hépital’s rule or previously learned methods. 385. lm(; X ln(x )
X —
2
o XxT=9 .
367. xh_r)n3 =3 386. xll)moo(x -
2 . 2 —x
i X2 =9 387. lim x“e
6. i A
X X
-2 _ 388. lim 3~ —2
369. lim U+0 =1 x>0 X
x—0
o1+ 1/x
370. Losx. 389, lim Ik

x—>7z/2%—x

390. lim (1 —tanx)cotx
x — nl4

371. lim &< =Z
X = 7T SInx
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391, lim xe'™
X — 0

392,  lim x!/eosx
x—>0+

393, lim x'*
X — 0+

394, lim (1 —%)X

x—0

X

395. lim (1 —l)

X — 00 X

For the following exercises, use a calculator to graph the
function and estimate the value of the limit, then use
L’Hopital’s rule to find the limit directly.

er—1
X

396. [T] lim
x—0

397. [T] lim xsin(%)

: x—1
398. [T] xll—r>nll — cos(zx)

P |
399. [T] lim &—
2
400. [T] lim &=L~
x—1 Inx

401, [T] i 1+€08X

402. [T] xlEnO(cscx - %)

403. [T] lim+ tan(x")

x—0

404. [T] lim 10X
« o ot sinx

—X

X
405. [T] lim &=¢—
[ ]xgn0 ~

471
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4.9 | Newton’s Method

Learning Objectives

4.9.1 Describe the steps of Newton’s method.

4.9.2 Explain what an iterative process means.

4.9.3 Recognize when Newton’s method does not work.
4.9.4 Apply iterative processes to various situations.

In many areas of pure and applied mathematics, we are interested in finding solutions to an equation of the form f(x) = 0.

For most functions, however, it is difficult—if not impossible—to calculate their zeroes explicitly. In this section, we take
a look at a technique that provides a very efficient way of approximating the zeroes of functions. This technique makes use
of tangent line approximations and is behind the method used often by calculators and computers to find zeroes.

Describing Newton’s Method

Consider the task of finding the solutions of f(x) =0. If f is the first-degree polynomial f(x) = ax+ b, then the
b

solution of f(x) =0 is given by the formula x = — . If f is the second-degree polynomial f(x) = ax® + bx + c,

the solutions of f(x) =0 can be found by using the quadratic formula. However, for polynomials of degree 3 or more,
finding roots of f becomes more complicated. Although formulas exist for third- and fourth-degree polynomials, they are
quite complicated. Also, if f is a polynomial of degree 5 or greater, it is known that no such formulas exist. For example,

consider the function

F) =x +8x* 443 —2x—7.
No formula exists that allows us to find the solutions of f(x) = 0. Similar difficulties exist for nonpolynomial functions.
For example, consider the task of finding solutions of tan(x) — x = 0. No simple formula exists for the solutions of this
equation. In cases such as these, we can use Newton’s method to approximate the roots.
Newton’s method makes use of the following idea to approximate the solutions of f(x) = 0. By sketching a graph of
f, we can estimate a root of f(x) =0. Let’s call this estimate x, We then draw the tangent line to f at x(. If
f'(xp) #£0, this tangent line intersects the x -axis at some point (x;, 0). Now let x; be the next approximation to the
actual root. Typically, x; is closer than x to an actual root. Next we draw the tangent line to f at x;. If f'(x;) #0,
this tangent line also intersects the x -axis, producing another approximation, x,. We continue in this way, deriving a list
of approximations: xg, x, X, ,.... Typically, the numbers x(, x;, x,,... quickly approach an actual root x*, as shown

in the following figure.
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fx)
Tangent line at x

(x3, f(x,))
Tangent line at x;

(%5, f(x,))

~— | Xt X X1 Xo =
Figure 4.77 The approximations X, X, X5 ,... approach the actual root x *. The
approximations are derived by looking at tangent lines to the graph of f.
Now let’s look at how to calculate the approximations x, x{, X,.... If x( is our first approximation, the approximation

x is defined by letting (x;, 0) be the x -intercept of the tangent line to f at x(. The equation of this tangent line is given
by

¥ = f(xp) + 17 (xp)(x — x).
Therefore, x; must satisfy

JGeg) + f (xg)xy —x9) =0.

Solving this equation for x;, we conclude that

 fxg)
07 Pl

X1 =X

Similarly, the point (xz, 0) is the x -intercept of the tangent line to f at x1. Therefore, x, satisfies the equation

_ f(x1)
R2ERTGy

In general, for n > 0, x,, satisfies

_ f(xn - 1) . (4.8)

Next we see how to make use of this technique to approximate the root of the polynomial f(x) = x> —3x+1.
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Example 4.46

Finding a Root of a Polynomial

Use Newton’s method to approximate a root of f(x) = x> = 3x+1 in the interval [1, 2]. Let xy =2 and find

X1, Xp, X3, X4, and xs.

Solution
From Figure 4.78, we see that f has one root over the interval (1, 2). Therefore x;=2 seems like

a reasonable first approximation. To find the next approximation, we use Equation 4.8. Since
fx) = =3+ 1, the derivative is f’(x) = 3x2 - 3. Using Equation 4.8 with n =1 (and a calculator
that displays 10 digits), we obtain

_ Jo) _H_ SO _H_3 .
X]=Xg TGy - 2 ) 2 o~ 1.666666667.
To find the next approximation, x,, we use Equation 4.8 with n =2 and the value of x; stored on the
calculator. We find that

_ S
xp= ) = ply & 15486111

Continuing in this way, we obtain the following results:
X1 = 1.666666667
X, ~ 1.548611111
x3 ~ 1.532390162
x4 ~ 1.532088989
x5~ 1.532088886
xg ~ 1.532088886.

We note that we obtained the same value for x5 and x4. Therefore, any subsequent application of Newton’s

method will most likely give the same value for x,,.

o

fx)=x3-3x+1

Figure 4.78 The function f(x) = x> = 3x+ 1 has one root

over the interval [1, 2].
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4.45  Letting xo =0, let’s use Newton’s method to approximate the root of f(x) = x> =3x+1 over the

interval [0, 1] by calculating x; and x,.

Newton’s method can also be used to approximate square roots. Here we show how to approximate V2. This method can
be modified to approximate the square root of any positive number.

Example 4.47

Finding a Square Root

Use Newton’s method to approximate V2 (Figure 4.79). Let f(x) = X% - 2, let xy=2, and calculate
X1, Xp, X3, X4, X5. (We note that since f(x) = x2—2 has a zero at V2, the initial value xg=2 is a

reasonable choice to approximate V2.)

Solution

For f(x) = e 2, f' (x) = 2x. From Equation 4.8, we know that

— f(xn—l)
=T G, )
_ x2n_1—2
=Xp-1 2xn—1
=%xn_l+xn1—l

= %(xn -1t xnz— 1)'

Therefore,
T
xy = Hx +2) =415+ ) ~ 1416666667
Continuing in this way, we find that
x; =15

X, = 1.416666667
x3 ~ 1.414215686
x4~ 1.414213562
x5~ 1.414213562.

Since we obtained the same value for x4 and xs, itis unlikely that the value x,, will change on any subsequent

application of Newton’s method. We conclude that V2 ~ 1.414213562.
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y
21
X* =
X, =15 Xg=2 X
—24
Figure 4.79 We can use Newton’s method to find V2.

@ 4.46  Use Newton’s method to approximate V3 by letting f(x) = x> —3 and x, = 3. Find x; and x,.

When using Newton’s method, each approximation after the initial guess is defined in terms of the previous approximation
f(x)
VAC))

Xp = F(x, _1). This type of process, where each x, is defined in terms of x, _; by repeating the same function, is an

by using the same formula. In particular, by defining the function F(x) = x — [ ], we can rewrite Equation 4.8 as

example of an iterative process. Shortly, we examine other iterative processes. First, let’s look at the reasons why Newton’s
method could fail to find a root.

Failures of Newton’s Method

Typically, Newton’s method is used to find roots fairly quickly. However, things can go wrong. Some reasons why Newton’s
method might fail include the following:

1. Atone of the approximations x,, the derivative f’ iszeroat x,, but f(x,) # 0. As aresult, the tangent line of

f at x, does not intersect the x -axis. Therefore, we cannot continue the iterative process.

2. The approximations x, Xy, X,,... may approach a different root. If the function f has more than one root, it is

possible that our approximations do not approach the one for which we are looking, but approach a different root
(see Figure 4.80). This event most often occurs when we do not choose the approximation x close enough to the

desired root.

3. The approximations may fail to approach a root entirely. In Example 4.48, we provide an example of a function
and an initial guess x( such that the successive approximations never approach a root because the successive

approximations continue to alternate back and forth between two values.
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1
1
[
1
1
1
1
1
1
1
1
1
1
Il

! )'(0 root sought\_/root found

Figure 4.80 1If the initial guess x(y is too far from the root sought, it may lead

to approximations that approach a different root.

Example 4.48

When Newton’s Method Fails

Consider the function f(x) = x> —2x+2. Let xg = 0. Show that the sequence xi, x,,... fails to approach a
root of f.

Solution

For f(x) = X —2x+ 2, the derivativeis f'(x) = 3x2-2. Therefore,

fG)) _o SO _ 2
Fap = FO- T2

.X1=X0—

In the next step,

JACSY) f 1

Xy =X — 5 =1-- =1-=-=0.
SR M 1

Consequently, the numbers x, x;, x,,... continue to bounce back and forth between 0 and 1 and never get

closer to the root of f which is over the interval [-2, —1] (see Figure 4.81). Fortunately, if we choose an

initial approximation x, closer to the actual root, we can avoid this situation.
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fx)|=x3 —2x + 2
41

_2..

Figure 4.81 The approximations continue to alternate
between 0 and 1 and never approach the root of f.

@ 447 For f(x) = x> —2x+2, let xy=—1.5 and find x, and x,.

From Example 4.48, we see that Newton’s method does not always work. However, when it does work, the sequence of
approximations approaches the root very quickly. Discussions of how quickly the sequence of approximations approach a
root found using Newton’s method are included in texts on numerical analysis.

Other Iterative Processes

As mentioned earlier, Newton’s method is a type of iterative process. We now look at an example of a different type of
iterative process.

Consider a function F and an initial number x,. Define the subsequent numbers x,, by the formula x, = F(x, _ ;). This
process is an iterative process that creates a list of numbers x(, x;, x5,..., xX5,.... This list of numbers may approach a

finite number x* as n gets larger, or it may not. In Example 4.49, we see an example of a function F and an initial
guess x( such that the resulting list of numbers approaches a finite value.

Example 4.49

Finding a Limit for an Iterative Process

Let F(x):lx+4 and let x,=0. Forall n>1, let x,, = F(x, _ ). Find the values x, x5, x3, x4, Xs.
> 0 n—1 1> X2, X3, X4, X5

Make a conjecture about what happens to this list of numbers x;, x5, x3..., X,,... as n — oo. If the list of
numbers Xy, X, X3,... approaches a finite number x*, then x* satisfies x* = F(x*), and x* is called

a fixed point of F.

Solution
If xo=0, then
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approaches x* =8 as n — 0.

479

x]=%(0)+4=4
x2=%(4)+4=6
x3=%(6)+4=7

xy=in+4=175

T2
xs=115+4=175
X6 =$(1.75) + 4 =7.875

Xy = %(7.875) +4=179375
xg = 3(7.9375) +4 = 796875

Xg = %(7.96875) +4 =7.984375.

From this list, we conjecture that the values x, approach 8.

Figure 4.82 provides a graphical argument that the values approach 8 as n — oco. Starting at the point
(xg» xg), we draw a vertical line to the point (x(, F(x()). The next number in our list is x; = F(xg). We use
X7 to calculate x,. Therefore, we draw a horizontal line connecting (x, x;) to the point (x{, x;) on the line
y =x, and then draw a vertical line connecting (x{, x;) to the point (x, F(x;)). The output F(x;) becomes
X,. Continuing in this way, we could create an infinite number of line segments. These line segments are trapped

between the lines F(x) = % +4 and y = x. The line segments get closer to the intersection point of these two

lines, which occurs when x = F(x). Solving the equation x =% + 4, we conclude they intersect at x = 8.

2

Therefore, our graphical evidence agrees with our numerical evidence that the list of numbers x,, x{, x,,...

4

F(x*) !
Xy =F(x,) t Fx)=35x+4
X, = F(Xy) T

A y=X
X, = F(xg) -
A
X X, X, Xy XX

Figure 4.82 This iterative process approaches the value
x* =8.



480 Chapter 4 | Applications of Derivatives
@ 4.48  Consider the function F(x) = %x +6. Let xg=0 and let x,=F(x,_,) for n>2. Find

X1, Xy, X3, X4, X5. Make a conjecture about what happens to the list of numbers xi, x5, x3,...x,,... as

n — 0.
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Student P

Iterative Processes and Chaos

Iterative processes can yield some very interesting behavior. In this section, we have seen several examples of iterative
processes that converge to a fixed point. We also saw in Example 4.48 that the iterative process bounced back and
forth between two values. We call this kind of behavior a 2 -cycle. Iterative processes can converge to cycles with

various periodicities, such as 2 — cycles, 4 — cycles (where the iterative process repeats a sequence of four values),
8-cycles, and so on.

Some iterative processes yield what mathematicians call chaos. In this case, the iterative process jumps from value to
value in a seemingly random fashion and never converges or settles into a cycle. Although a complete exploration of
chaos is beyond the scope of this text, in this project we look at one of the key properties of a chaotic iterative process:
sensitive dependence on initial conditions. This property refers to the concept that small changes in initial conditions
can generate drastically different behavior in the iterative process.

Probably the best-known example of chaos is the Mandelbrot set (see Figure 4.83), named after Benoit Mandelbrot
(1924-2010), who investigated its properties and helped popularize the field of chaos theory. The Mandelbrot set is
usually generated by computer and shows fascinating details on enlargement, including self-replication of the set.
Several colorized versions of the set have been shown in museums and can be found online and in popular books on
the subject.

Figure 4.83 The Mandelbrot set is a well-known example of a set of points generated by the
iterative chaotic behavior of a relatively simple function.

In this project we use the logistic map

f(x) =rx(1 —x), wherex € [0, 1]andr > 0
as the function in our iterative process. The logistic map is a deceptively simple function; but, depending on the value
of r, the resulting iterative process displays some very interesting behavior. It can lead to fixed points, cycles, and

even chaos.
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To visualize the long-term behavior of the iterative process associated with the logistic map, we will use a tool called a
cobweb diagram. As we did with the iterative process we examined earlier in this section, we first draw a vertical line
from the point (xg, 0) to the point (x(, f(xg)) = (X, X;). We then draw a horizontal line from that point to the point

(xq, x1), then draw a vertical line to (x;, f(x;)) = (x;, X,), and continue the process until the long-term behavior
of the system becomes apparent. Figure 4.84 shows the long-term behavior of the logistic map when r = 3.55 and
xg=0.2. (The first 100 iterations are not plotted.) The long-term behavior of this iterative process is an 8 -cycle.

y
fix) = 3.55x(1 — x)
g

S

X
Figure 4.84 A cobweb diagram for f(x) = 3.55x(1 — x) is

presented here. The sequence of values results in an 8 -cycle.

1. Let » =0.5 and choose x; = 0.2. Either by hand or by using a computer, calculate the first 10 values in the
sequence. Does the sequence appear to converge? If so, to what value? Does it result in a cycle? If so, what
kind of cycle (for example, 2 — cycle, 4 —cycle.)?

2. What happens when r =27

3. For r=3.2 and r=3.5, calculate the first 100 sequence values. Generate a cobweb diagram for each

iterative process. (Several free applets are available online that generate cobweb diagrams for the logistic map.)
What is the long-term behavior in each of these cases?

4. Now let r = 4. Calculate the first 100 sequence values and generate a cobweb diagram. What is the long-
term behavior in this case?

5. Repeat the process for r =4, but let x;=0.201. How does this behavior compare with the behavior for
x9=0.27
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4.9 EXERCISES

For the following exercises, write Newton’s formula as
X, 41 = F(xp) forsolving f(x)=0.

406. f(x)=x>+1

407. f)=x>+2x+1
408. f(x) = sinx

409. f(x)=e*

410. f(x) = x° + 3xe*

For the following exercises, solve f(x) =0 using the

iteration x, , | = x, —cf(x,), which differs slightly

from Newton’s method. Find a ¢ that works and a ¢ that
fails to converge, with the exception of ¢ = 0.

411. f(x) = x2 - 4, with xo=0
412, f(x) = x> —4x+3, with x; =2

413. What is the value of “c” for Newton’s method?

For the following exercises, start at

a. xo=0.6 and
b. Xo = 2.

Compute x; and x, using the specified iterative method.

M4, x, =% =%

415. x, 1= 2x,(1 = x,)

416. x| =\En

1
M7, Xy =

=

418. x, 1 =3x,(1—x,)
_ 2

419. X, 1 =Xy +x,—2
=1, _

420. x,,1= >¥n 1

421, x,,q = bl

For the following exercises, solve to four decimal places
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using Newton’s method and a computer or calculator.
Choose any initial guess x, that is not the exact root.

422, x*=10=0
423. x*-100=0
424, x*—x=0
45 xP—x=0

426. x+5cos(x) =0

427. x+tan(x) =0, choose xg € (—%, %)

428, —L_—»

49, l+x+x2+x>+x*=2
430. x>+ (x+1)7> =103

— n2
431. x =sin“(x)

For the following exercises, use Newton’s method to find
the fixed points of the function where f(x) = x; round to

three decimals.

432. sinx

433. tan(x) on x = (% 37”)

434, e* -2
435, In(x) +2

Newton’s method can be used to find maxima and minima
of functions in addition to the roots. In this case apply
Newton’s method to the derivative function f’(x) to find

its roots, instead of the original function. For the following
exercises, consider the formulation of the method.

436. To find candidates for maxima and minima, we need
to find the critical points f’ (x) = 0. Show that to solve for

the critical points of a function f(x), Newton’s method is

. NACs)
iven by x =Xp— G
BIVERDY e 1 =50 T )

437. What additional restrictions are necessary on the
function f?
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For the following exercises, use Newton’s method to find
the location of the local minima and/or maxima of the
following functions; round to three decimals.

438. Minimum of f(x) = X2+ 2x+4

439. Minimum of f(x) = 3P +2x2-16

440. Minimum of f(x) = x%e*

441. Maximum of f(x) =x +%

442. Maximum of f(x) = x> +10x2 + 15x =2

443. Maximum of f(x) = @

444. Minimum of f(x) = x2 sinx, closest non-zero

minimum to x =0

445. Minimum of f(x) = P32+ 120+ 6

For the following exercises, use the specified method to
solve the equation. If it does not work, explain why it does
not work.

446. Newton’s method, 2+2=0

447. Newton’s method, 0 = e*

448. Newton’s method, 0 =1 + %2 starting at xo =0

449. Solving x, , | = —x,,3 starting at xy = —1

For the following exercises, use the secant method, an
alternative iterative method to Newton’s method. The
formula is given by

_ _ VY *n—-1"%n-2
Xn=Xp_1 f(x"_l/f(xn_l)_f(xn—Z).

2

450. Find a root to 0 =x“—x—3 accurate to three

decimal places.

451. Find a root to 0 =sinx+ 3x accurate to four
decimal places.

452. Find aroot to 0 = e* — 2 accurate to four decimal
places.

453. Find a root to In(x+2) = % accurate to four
decimal places.
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454. Why would you use the secant method over
Newton’s method? What are the necessary restrictions on

12

For the following exercises, use both Newton’s method
and the secant method to calculate a root for the following
equations. Use a calculator or computer to calculate how
many iterations of each are needed to reach within three
decimal places of the exact answer. For the secant method,
use the first guess from Newton’s method.

455. f()=x>+2x+1,x5=1
456. f(x) = x> xg=1

457.  f(x) =sinx, xo =1

458. f(x)=e*—1,x5=2

459. f(x)=x>+2x+4,x,=0

In the following exercises, consider Kepler’s equation
regarding planetary orbits, M = E — esin(E), where M
is the mean anomaly, E is eccentric anomaly, and &
measures eccentricity.

460. Use Newton’s method to solve for the eccentric

anomaly E when the mean anomaly M = % and the

eccentricity of the orbit &=0.25; round to three

decimals.

461. Use Newton’s method to solve for the eccentric

anomaly E when the mean anomaly M = 3% and the

2
eccentricity of the orbit £ = 0.8; round to three decimals.

The following two exercises consider a bank investment.
The initial investment is $10,000. After 25 years, the

investment has tripled to $30,000.

462. Use Newton’s method to determine the interest rate
if the interest was compounded annually.

463. Use Newton’s method to determine the interest rate
if the interest was compounded continuously.

464. The cost for printing a book can be given by the
equation C(x) = 1000 + 12x + (%)XZB. Use Newton’s

method to find the break-even point if the printer sells each
book for $20.
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4.10 | Antiderivatives

Learning Objectives

4.10.1 Find the general antiderivative of a given function.

4.10.2 Explain the terms and notation used for an indefinite integral.
4.10.3 State the power rule for integrals.

4.10.4 Use antidifferentiation to solve simple initial-value problems.

At this point, we have seen how to calculate derivatives of many functions and have been introduced to a variety of their
applications. We now ask a question that turns this process around: Given a function f, how do we find a function with

the derivative f and why would we be interested in such a function?

We answer the first part of this question by defining antiderivatives. The antiderivative of a function f is a function with a
derivative f. Why are we interested in antiderivatives? The need for antiderivatives arises in many situations, and we look

at various examples throughout the remainder of the text. Here we examine one specific example that involves rectilinear
motion. In our examination in Derivatives of rectilinear motion, we showed that given a position function s(¢) of an

object, then its velocity function v(¢) is the derivative of s(r) —that is, v(¢) = s’ (). Furthermore, the acceleration a(f)
is the derivative of the velocity v(f) —that is, a(f) = v’ (¢) = s”(t). Now suppose we are given an acceleration function
a, but not the velocity function v or the position function s. Since a(f) =v’'(f), determining the velocity function
requires us to find an antiderivative of the acceleration function. Then, since v(f) = s’(#), determining the position

function requires us to find an antiderivative of the velocity function. Rectilinear motion is just one case in which the
need for antiderivatives arises. We will see many more examples throughout the remainder of the text. For now, let’s look
at the terminology and notation for antiderivatives, and determine the antiderivatives for several types of functions. We
examine various techniques for finding antiderivatives of more complicated functions later in the text (Introduction to
Techniques of Integration (http:/icnx.org/lcontent/m53654/latest/) ).

The Reverse of Differentiation

At this point, we know how to find derivatives of various functions. We now ask the opposite question. Given a function
f, how can we find a function with derivative f? If we can find a function F' derivative f, we call F an antiderivative

of f.

Definition

A function F is an antiderivative of the function f if
F'(x) = f(®)

for all x in the domain of f.

Consider the function f(x) =2x. Knowing the power rule of differentiation, we conclude that F(x) = x% is an
antiderivative of f since F’(x) = 2x. Are there any other antiderivatives of f? Yes; since the derivative of any constant
C is zero, x2 + C is also an antiderivative of 2x. Therefore, x2+5 and x2 — V2 are also antiderivatives. Are there any

others that are not of the form x*+ C for some constant C? The answer is no. From Corollary 2 of the Mean Value
Theorem, we know that if F and G are differentiable functions such that F’(x) = G’ (x), then F(x) — G(x) = C for

some constant C. This fact leads to the following important theorem.
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Theorem 4.14: General Form of an Antiderivative

Let F be an antiderivative of f over an interval /. Then,
i. for each constant C, the function F(x)+ C is also an antiderivative of f over I,
ii. if G isan antiderivative of f over I, there is a constant C for which G(x) = F(x) + C over I.

In other words, the most general form of the antiderivative of f over I is F(x)+ C.

We use this fact and our knowledge of derivatives to find all the antiderivatives for several functions.

Example 4.50

Finding Antiderivatives

For each of the following functions, find all antiderivatives.

a. f(x)=3x>
b f)=%
c. f(x)=cosx
d f(x)=¢e*
Solution
a. Because
%(ﬁ) = 3x2

then F(x) = x? is an antiderivative of 3xZ. Therefore, every antiderivative of 3x2 is of the form

x>+ C for some constant C, and every function of the form x> + C is an antiderivative of 3x”.

b. Let f(x) =Inlxl. For x > 0, f(x) = In(x) and
Linx = 1.
For x <0, f(x) = In(—x) and

Lin(-n)= L= 1.

Therefore,

d =1
dx(lnlxl) =5

Thus, F(x) =Inlx| is an antiderivative of % Therefore, every antiderivative of % is of the form
Inlx| + C for some constant C and every function of the form Inlx| + C is an antiderivative of %

c. We have
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d(giny) =
dx(smx) = COSX,

so F(x) =sinx is an antiderivative of cosx. Therefore, every antiderivative of cosx is of the form

sinx + C for some constant C and every function of the form sinx + C is an antiderivative of cosx.
d. Since

d,xy _ X
dx(e)_e’

then F(x) = e* is an antiderivative of e”. Therefore, every antiderivative of e” is of the form e* + C

for some constant C and every function of the form e*+ C is an antiderivative of e™*.

@ 4.49 Find all antiderivatives of f(x) = sinx.

Indefinite Integrals
We now look at the formal notation used to represent antiderivatives and examine some of their properties. These properties
af

allow us to find antiderivatives of more complicated functions. Given a function f, we use the notation f’(x) or Ix

to denote the derivative of f. Here we introduce notation for antiderivatives. If F is an antiderivative of f, we say that

F(x) + C is the most general antiderivative of f and write
[redx = Fo + .

The symbol f is called an integral sign, and / f(x)dx is called the indefinite integral of f.

Definition

Given a function f, the indefinite integral of f, denoted

[ fax,

is the most general antiderivative of f. If F is an antiderivative of f, then

[r@dx=Fe +c.

The expression f(x) is called the integrand and the variable x is the variable of integration.

Given the terminology introduced in this definition, the act of finding the antiderivatives of a function f is usually referred

to as integrating f.

For a function f and an antiderivative F, the functions F(x) + C, where C is any real number, is often referred to as

2

the family of antiderivatives of f. For example, since x“ is an antiderivative of 2x and any antiderivative of 2x is of the

form x% + C, we write
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/2xdx =x’+C.

The collection of all functions of the form x2 + C , where C is any real number, is known as the family of antiderivatives

of 2x. Figure 4.85 shows a graph of this family of antiderivatives.
y

Figure 4.85 The family of antiderivatives of 2x consists of all functions of the

form x2 + C, where C is any real number.

For some functions, evaluating indefinite integrals follows directly from properties of derivatives. For example, for

n# -1,

n _xn+1
/x dx—n+1+C,

which comes directly from

ixn+l _ X" o
dx(n+l _(n+1)n+l_x'

This fact is known as the power rule for integrals.

Theorem 4.15: Power Rule for Integrals
For n # —1,

/nd xn+1 c
X x—n+1+ 0

Evaluating indefinite integrals for some other functions is also a straightforward calculation. The following table lists the
indefinite integrals for several common functions. A more complete list appears in Appendix B.
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Differentiation Formula

Indefinite Integral

d ) —
a(k) =0

[kdx= [idx = ke +C

dony_ n—1
dx(x ) =nx

+1
/x”dn=x” +C for n# -1

n+1

d =1
dx(lnlxl) =5

[Lax=1n+c

dxy _ x
dx(e)—e

fexdx:ex+c

d(ginx) =
dx(smx) = Ccosx

/cosxdx =sinx+ C

d R
dx(cosx) = —sinx

/sinxdx = —cosx+ C

d, _ 2
dx(tanx) =sec”x

/seczxdx =tanx+ C

%(CSCX) = —cscxcotx /cscxcotxdx =—cscx+ C
%(secx) = secxtanx /secxtanxdx =secx+C

d a2
dx(cotx)— cscéx

/csczxdx = —cotx+ C

/ 1 =sin"'x+C

V1 — %2

d 1y _ 1 1 -1
tan” x| = dx = tan +C
d)C ) 1 + )C2 /1 + X2 X X
d -1 _ 1 1 -1
sec le) = ————dx=sec” x|+ C
/ A2-1

dx x1x2_1

Table 4.13 Integration Formulas

From the definition of indefinite integral of f, we know

[feodx = Fexy + €

489
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if and only if F is an antiderivative of f. Therefore, when claiming that

[rdx=Fe +c

it is important to check whether this statement is correct by verifying that F’ (x) = f(x).

Example 4.51

Verifying an Indefinite Integral

Each of the following statements is of the form / f()dx = F(x) + C. Verify that each statement is correct by
showing that F’ (x) = f(x).

2
a. f(x+ex)dx=x7+ex+c

b. xe¥dx =xe* —e*+C
Solution
a. Since

2
%(%+ex+C)=x+ex,

the statement

2
f(x+ex)dx=x7+ex+c

is correct.

2
Note that we are verifying an indefinite integral for a sum. Furthermore, - and e* are antiderivatives

2
of x and e¥, respectively, and the sum of the antiderivatives is an antiderivative of the sum. We discuss

this fact again later in this section.
b. Using the product rule, we see that
X

%(xex—ex+C)=ex+xex—e"=xe }

Therefore, the statement

/xexdx=xex—ex+C

is correct.
Note that we are verifying an indefinite integral for a product. The antiderivative xe*—e* is not

a product of the antiderivatives. Furthermore, the product of antiderivatives, x%e*/2 is not an

antiderivative of xe” since

%(xzzex) — xe' 4 xzzex # xe.

In general, the product of antiderivatives is not an antiderivative of a product.
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@ 4.50 Verify that /xcosxdx = xsinx + cosx + C.

In Table 4.13, we listed the indefinite integrals for many elementary functions. Let’s now turn our attention to evaluating
indefinite integrals for more complicated functions. For example, consider finding an antiderivative of a sum f + g.

2
In Example 4.51a. we showed that an antiderivative of the sum x + ¥ is given by the sum (XT) + e —that is, an

antiderivative of a sum is given by a sum of antiderivatives. This result was not specific to this example. In general, if F
and G are antiderivatives of any functions f and g, respectively, then

LE®D +G@) =F (0+G @) = () + .
Therefore, F(x) + G(x) is an antiderivative of f(x) + g(x) and we have
f (F(0) + g(x)Mdx = F(x) + G(x) + C.
Similarly,
[ - gkx = Fo) - G + €.

In addition, consider the task of finding an antiderivative of kf(x), where k is any real number. Since
d _.d —Lf
Lef () = kEF () = kf (9
for any real number k£, we conclude that
[kfodx = kF () + C.

These properties are summarized next.

Theorem 4.16: Properties of Indefinite Integrals

Let F and G be antiderivatives of f and g, respectively, and let k be any real number.

Sums and Differences
[(F£gldx = FO£G(x) + €
Constant Multiples

[kfGdx = kF@) + €

From this theorem, we can evaluate any integral involving a sum, difference, or constant multiple of functions with
antiderivatives that are known. Evaluating integrals involving products, quotients, or compositions is more complicated (see
Example 4.51b. for an example involving an antiderivative of a product.) We look at and address integrals involving these
more complicated functions in Introduction to Integration. In the next example, we examine how to use this theorem to
calculate the indefinite integrals of several functions.

Example 4.52

Evaluating Indefinite Integrals
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Evaluate each of the following indefinite integrals:

a. f(5x3 —Tx%4+3x+ 4)dx

2
X +4§/x

C. 4 iy
J

1+ x2

d. /tanxcosxdx

Solution

a. Using Properties of Indefinite Integrals, we can integrate each of the four terms in the integrand
separately. We obtain

f(5x3—7x2+3x+4)dx: fode—/7x2dx+f3xdx+/4dx.

From the second part of Properties of Indefinite Integrals, each coefficient can be written in front of
the integral sign, which gives

[5xax— [12dx+ [3xdx+ [ddx=5[Pax=7[x*dx+3 [xdx+4 [1dx

Using the power rule for integrals, we conclude that

/(5x3—7x2+3x+4)dx=%x4—%x3+%x2+4x+c.

b. Rewrite the integrand as

=
[\)
k +
bl
5y
(i8]
&
=
Il
(=)

— X

Then, to evaluate the integral, integrate each of these terms separately. Using the power rule, we have

/(x+% X =fxdx+4/x_2/3dx
X

=%x2+4 1 -23)+1
(5)+1

= %xz +12x"B 4

+C

c. Using Properties of Indefinite Integrals, write the integral as

4/ 1 de.

1+x

1

— 5 1o conclude that
(l +x )

Then, use the fact that tan~! (x) is an antiderivative of

[—2dx=4tan 0 + C.
1+x

d. Rewrite the integrand as

sinx
COSX

tanxcosx = COSX = sinx.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Chapter 4 | Applications of Derivatives 493

Therefore,

ftanxcosx = fsinx = —cosx + C.

@ 4.51 Evaluate / (4x3 —5x%4x— 7)dx.

Initial-Value Problems

We look at techniques for integrating a large variety of functions involving products, quotients, and compositions later in
the text. Here we turn to one common use for antiderivatives that arises often in many applications: solving differential
equations.

A differential equation is an equation that relates an unknown function and one or more of its derivatives. The equation

dy _ (4.9)
i fx)

is a simple example of a differential equation. Solving this equation means finding a function y with a derivative f.
Therefore, the solutions of Eqquation 4.9 are the antiderivatives of f. If F is one antiderivative of f, every function of

the form y = F(x) + C is a solution of that differential equation. For example, the solutions of

dy 2
dx—6x

are given by
y= f6x2dx= 23+ C.

Sometimes we are interested in determining whether a particular solution curve passes through a certain point (x, y()

—that is, y(xg) = yo. The problem of finding a function y that satisfies a differential equation

dy _ (4.10)
yrie fx)

with the additional condition
¥(xg) =yo (4.11)

is an example of an initial-value problem. The condition y(x,) =y, is known as an initial condition. For example,

looking for a function y that satisfies the differential equation

dy 2

= 6x
and the initial condition

y1)=35

is an example of an initial-value problem. Since the solutions of the differential equation are y = 2x>+C, tofind a
function y that also satisfies the initial condition, we need to find C such that y(1) = 2(1)3 + C = 5. From this equation,

we see that C =3, and we conclude that y = 2x> 43 is the solution of this initial-value problem as shown in the

following graph.
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Figure 4.86 Some of the solution curves of the differential equation % = 6x2

are displayed. The function y = 2x3 + 3 satisfies the differential equation and the

initial condition y(1) = 5.

Example 4.53

Solving an Initial-Value Problem

Solve the initial-value problem

dy _ -

Jx = Sinx, y(0) =5.
Solution
First we need to solve the differential equation. If % = sinx, then

y= /sin(x)dx = —cosx + C.

Next we need to look for a solution y that satisfies the initial condition. The initial condition y(0) = 5 means

we need a constant C such that —cosx + C = 5. Therefore,
C =5+cos(0) =6.

The solution of the initial-value problem is y = —cosx + 6.

@ 4.52 Solve the initial value problem % =3x72 y(1) =2.

Initial-value problems arise in many applications. Next we consider a problem in which a driver applies the brakes in a car.
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We are interested in how long it takes for the car to stop. Recall that the velocity function v(#) is the derivative of a position
function s(¢), and the acceleration a(f) is the derivative of the velocity function. In earlier examples in the text, we could

calculate the velocity from the position and then compute the acceleration from the velocity. In the next example we work
the other way around. Given an acceleration function, we calculate the velocity function. We then use the velocity function
to determine the position function.

Example 4.54

Decelerating Car

A car is traveling at the rate of 88 ft/sec (60 mph) when the brakes are applied. The car begins decelerating at a

constant rate of 15 ft/sec?.

a. How many seconds elapse before the car stops?

b. How far does the car travel during that time?

Solution
a. First we introduce variables for this problem. Let ¢ be the time (in seconds) after the brakes are first
applied. Let a(?) be the acceleration of the car (in feet per seconds squared) at time ¢. Let v(t) be the
velocity of the car (in feet per second) at time . Let s(#) be the car’s position (in feet) beyond the point
where the brakes are applied at time 7.
The car is traveling at a rate of 88 ft/sec. Therefore, the initial velocity is v(0) = 88 ft/sec. Since the car

is decelerating, the acceleration is

a(t) = —15 fu/s>.

The acceleration is the derivative of the velocity,
v (t) = —15.

Therefore, we have an initial-value problem to solve:

V' () = =15, v(0) = 88.

Integrating, we find that
v(t) = =15t + C.

Since v(0) = 88, C = 88. Thus, the velocity function is
v(t) = —151 + 88.

To find how long it takes for the car to stop, we need to find the time ¢ such that the velocity is zero.

Solving —15¢+ 88 =0, we obtain ¢ = 88 sec.

15

b. To find how far the car travels during this time, we need to find the position of the car after 88 sec. we

15
know the velocity v(¢) is the derivative of the position s(f). Consider the initial position to be s(0) = 0.

Therefore, we need to solve the initial-value problem
s' () = —15¢ + 88, s(0) = 0.
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Integrating, we have

s() = — %12 + 88+ C.

Since s(0) =0, the constantis C = 0. Therefore, the position function is

s = =137 + 881,

_ 8 ition is s(38) ~
After t = 15 S¢S the position is S(IS) ~ 258.133 ft.

4.53 Suppose the car is traveling at the rate of 44 ft/sec. How long does it take for the car to stop? How far
will the car travel?
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4.10 EXERCISES

For the following exercises, show that F(x) are

antiderivatives of f(x).

465.
Fx) =52 +2x2+3x+ 1, f(x) = 15x> + 4x + 3

466. F(x)=x’>+4x+1, f(x) =2x+4
467. F(x) = x*e", f(x) = e*(x? + 2x)
468. F(x) = cosx, f(x) = —sinx

469. F(x) =e*, f(x) = ¢

For the following exercises, find the antiderivative of the
function.

470. f) =L +x
X

471, f(x) = ¢ — 3x% + sinx
472, f(x) = ¢ + 3x — x?
473. f(x) = x— 1+ 4sin(2x)

For the following exercises, find the antiderivative F(x) of

each function f(x).

474.  f(x) = Sx* +4x°

475. f(x) = x + 12x?
=L

476. f(x) =&

477. f(x) = (v©)°
478. f(x) =x"+ @03

/3
479. f(x) =%~

5!
x2/3
480. f(x) = 2sin(x) + sin(2x)

481, f(x) =sec?(x) + 1

482. f(x) =sinxcosx
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483.  f(x) = sin® (x)cos(x)

484. f(x)=0
485. =Lege? L
fx) = 5ese” () + 3

486. f(x) = cscxcotx + 3x
487. f(x) = 4cscxcotx — secxtanx

488. f(x) = 8secx(secx — 4tanx)
489. f(x) = %2_4’5 + sinx

For the following exercises, evaluate the integral.

490.  [(~ydx
491. /sinxdx

492. [ (Ax + vodx
32242
493 [3£24y
X
494, f (secxtanx + 4x)dx

495. [ (4va +x)dx

496. f(x_1/3 - xz/g)dx

3
497. f W“‘—SZXHdX
X

498. f(ex + e Ndx

For the following exercises, solve the initial value problem.

499. f'(x)=x"3 f(=1
500. f'(x) =vx+x% f(0)=2
501. f'(x) = cosx + sec2(x), f(%) =24 %

502. f'(x)=x>—8x>+16x+1, f(0)=0
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2
503. f'(n)=-2-%, f(1)=0
=% -4 )

For the following exercises, find two possible functions f

given the second- or third-order derivatives.
504. f'(x)=x>+2

505. f'(x)=e ¥

506. f"(x)=14+x

507. f"(x) =cosx

508. f(x) = 8¢~ > — sinx

509. A car is being driven at a rate of 40 mph when the

brakes are applied. The car decelerates at a constant rate of
10 ft/sec’. How long before the car stops?

510. In the preceding problem, calculate how far the car
travels in the time it takes to stop.

511. You are merging onto the freeway, accelerating at a
constant rate of 12 ft/sec’. How long does it take you to

reach merging speed at 60 mph?

512. Based on the previous problem, how far does the car
travel to reach merging speed?

513. A car company wants to ensure its newest model can
stop in 8 sec when traveling at 75 mph. If we assume

constant deceleration, find the value of deceleration that
accomplishes this.

514. A car company wants to ensure its newest model can
stop in less than 450 ft when traveling at 60 mph. If we

assume constant deceleration, find the value of deceleration
that accomplishes this.

For the following exercises, find the antiderivative of the
function, assuming F(0) = 0.

515. [T] f(x) =x>+2
516. [T] f(x) = 4x — V&
517. [T] f(x) = sinx + 2x
518. [T] f(x) = "

519. [T -1
ml 0 =L

520. [T] f(x) = e 2" + 3x?
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For the following exercises, determine whether the
statement is true or false. Either prove it is true or find a
counterexample if it is false.

521. If f(x) is the antiderivative of v(x), then 2f(x) is

the antiderivative of 2v(x).

522, If f(x) is the antiderivative of v(x), then f(2x) is

the antiderivative of v(2x).

523. If f(x) is the antiderivative of v(x), then f(x)+ 1

is the antiderivative of v(x) + 1.

524. If f(x) is the antiderivative of v(x), then (f(x))

is the antiderivative of (v(x))z.
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CHAPTER 4 REVIEW

KEY TERMS

absolute extremum if f has an absolute maximum or absolute minimum at ¢, we say f has an absolute extremum

at ¢

absolute maximum if f(c) > f(x) forall x inthe domain of f, wesay f has an absolute maximum at ¢
absolute minimum if f(c) < f(x) forall x in the domain of f, wesay f has an absolute minimum at ¢
antiderivative a function F such that F’ (x) = f(x) for all x in the domain of f is an antiderivative of f

concave down if f is differentiable over an interval / and f” is decreasing over I/, then f is concave down over
1

concave up if f is differentiable over an interval / and f’ is increasing over I/, then f is concave up over /

concavity the upward or downward curve of the graph of a function

concavity test suppose f is twice differentiable over an interval I; if f” > 0 over I, then f is concave up over I,
if f” <0 over I, then f is concave down over /

critical point if f'(c) =0 or f'(c¢) is undefined, we say that ¢ is a critical point of f

differential the differential dx is an independent variable that can be assigned any nonzero real number; the differential
dy is defined to be dy = f'(x)dx

differential form given a differentiable function y = f’(x), the equation dy = f'(x)dx is the differential form of the
derivative of y with respectto x

end behavior the behavior of a function as x - o and x - —o0

extreme value theorem if f is a continuous function over a finite, closed interval, then f has an absolute maximum

and an absolute minimum

Fermat’s theorem if f has alocal extremum at ¢, then c is a critical point of f

first derivative test let f be a continuous function over an interval / containing a critical point ¢ such that f is
differentiable over I except possibly at c; if f’ changes sign from positive to negative as x increases through c,
then f has alocal maximum at c; if f’ changes sign from negative to positive as x increases through ¢, then f

has a local minimum at c¢; if f’ does not change sign as x increases through ¢, then f does not have a local

extremum at ¢

horizontal asymptote if Xli}moo fx)=L or . lirr_loo f(x) =L, then y =L is ahorizontal asymptote of f

indefinite integral the most general antiderivative of f(x) is the indefinite integral of f; we use the notation

f f(x)dx to denote the indefinite integral of f

indeterminate forms when evaluating a limit, the forms %, oo/, 0-00, 00— 00, 00, ooo, and 1% are
considered indeterminate because further analysis is required to determine whether the limit exists and, if so, what its
value is

infinite limit at infinity a function that becomes arbitrarily large as x becomes large

inflection point if f is continuous at ¢ and f changes concavity at ¢, the point (¢, f(c)) is an inflection point of f
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initial value problem

a problem that requires finding a function y that satisfies the differential equation % = f(x)

together with the initial condition y(xq) =y
iterative process process in which a list of numbers x, x{, X, x3... is generated by starting with a number x and

defining x, = F(x,_) for n > 1
limit at infinity the limiting value, if it exists, of a function as x — o or x - —

linear approximation the linear function L(x) = f(a) + f'(a)(x — a) is the linear approximation of f at x =a
local extremum if f has alocal maximum or local minimum at ¢, we say f has a local extremum at ¢

local maximum if there exists an interval / such that f(c) > f(x) forall x € I, wesay f has a local maximum at

c

local minimum if there exists an interval / such that f(c) < f(x) forall x € I, wesay f has alocal minimum at ¢

L’'Hopital’s rule if f and g are differentiable functions over an interval a, except possibly at a, and

. P . . . f L ()
xh_r)na fx)=0= xh_I)nag(x) or xh_I)na f(x) and xh_r)nag(x) are infinite, then xh_l)n S = lim ———=

= ——<_ assuming the
ag(x) ~ x=ag (x) &

limit on the right exists or is co or —oco
mean value theorem if f is continuous over [a, b] and differentiable over (a, b), then there exists ¢ € (a, b) such
that

ey — SO — f(@)
f© I —

Newton’s method method for approximating roots of f(x) =0; using an initial guess x(; each subsequent

_ f(xn_l)
=, — )

approximation is defined by the equation x, = x

oblique asymptote the line y = mx+ b if f(x) approachesitas x = oo or x - —oo

optimization problems problems that are solved by finding the maximum or minimum value of a function
percentage error the relative error expressed as a percentage

propagated error the error that results in a calculated quantity f(x) resulting from a measurement error dx

related rates are rates of change associated with two or more related quantities that are changing over time

relative error Ag

given an absolute error Ag for a particular quantity, 7 is the relative error.

rolle’s theorem if f is continuous over [a, b] and differentiable over (a, b), andif f(a) = f(b), then there exists
c € (a, b) suchthat f'(c)=0

second derivative test suppose f'(c) =0 and f” is continuous over an interval containing c; if f"(c) > 0, then
f has a local minimum at c¢; if f”(c) <0, then f has a local maximum at c; if f”(c) =0, then the test is

inconclusive

tangent line approximation (linearization) since the linear approximation of f at x =a is defined using the
equation of the tangent line, the linear approximation of f at x = a is also known as the tangent line approximation

to fatx=a

KEY EQUATIONS

¢ Linear approximation
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L(x) = f(a) + f(a)(x — a)
¢ A differential
dy = f'(x)dx.
KEY CONCEPTS

4.1 Related Rates
¢ To solve a related rates problem, first draw a picture that illustrates the relationship between the two or more related
quantities that are changing with respect to time.
« Interms of the quantities, state the information given and the rate to be found.
¢ Find an equation relating the quantities.
¢ Use differentiation, applying the chain rule as necessary, to find an equation that relates the rates.

* Be sure not to substitute a variable quantity for one of the variables until after finding an equation relating the rates.

4.2 Linear Approximations and Differentials

» A differentiable function y = f(x) can be approximated at a by the linear function

L(x) = f(a) + f(a)(x — a).

* Fora function y = f(x), if x changes from a to a + dx, then

dy = f'(x)dx

is an approximation for the change in y. The actual change in y is
Ay = f(a + dx) — f(a).
* A measurement error dx can lead to an error in a calculated quantity f(x). The error in the calculated quantity is
known as the propagated error. The propagated error can be estimated by
dy ~ f'(x)dx.

. . . . . Aq
* To estimate the relative error of a particular quantity g, we estimate 7

4.3 Maxima and Minima

¢ A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or
have no absolute maximum or absolute minimum.

 If a function has a local extremum, the point at which it occurs must be a critical point. However, a function need
not have a local extremum at a critical point.

¢ A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each
extremum occurs at a critical point or an endpoint.

4.4 The Mean Value Theorem

e If f is continuous over [a, b] and differentiable over (a, b) and f(a) =0 = f(b), then there exists a point
¢ € (a, b) such that f’(c) = 0. This is Rolle’s theorem.

e If f is continuous over [a, b] and differentiable over (a, b), then there exists a point ¢ € (a, b) such that

oy - S = fl@)
fioy ==,
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This is the Mean Value Theorem.

If f'(x) =0 over an interval /, then f is constant over I.

If two differentiable functions f and g satisfy f'(x) = g'(x) over I, then f(x) = g(x)+ C for some constant
C.

If f'(x) > 0 over an interval I/, then f is increasing over I. If f’(x) < 0 over I, then f is decreasing over
I

4.5 Derivatives and the Shape of a Graph

If ¢ is acritical point of f and f'(x) > 0 for x < ¢ and f'(x) <O for x > ¢, then f has alocal maximum at

C.

If ¢ is a critical point of f and f’(x) < 0 for x < ¢ and f'(x) >0 for x > ¢, then f has alocal minimum at

C.

If f”(x) > 0 over aninterval /, then f is concave up over I.

If f"(x) <0 over aninterval /, then f isconcave down over 1.
If f'(¢)=0 and f"(c) >0, then f has alocal minimum at c.

If f'(¢)=0 and f"(c) <0, then f has alocal maximum at c.

If f'(c)=0 and f"(c) =0, thenevaluate f’(x) ata test point x to the left of ¢ and a test point x to the right

of ¢, to determine whether f has a local extremum at c.

4.6 Limits at Infinity and Asymptotes

The limit of f(x) is L as x - oo (or as x — —oo) if the values f(x) become arbitrarily close to L as x
becomes sufficiently large.

The limit of f(x) is oo as x = oo if f(x) becomes arbitrarily large as x becomes sufficiently large. The limit
of f(x) is —o0 as x = oo if f(x) <0 and |f(x)| becomes arbitrarily large as x becomes sufficiently large. We

can define the limit of f(x) as x approaches —oco similarly.

1

For a polynomial function p(x) =a,x"+a,_1x"~ " +...+ajx+ag where a,# 0, the end behavior is

determined by the leading term a,x". If n # 0, p(x) approaches co or —co at each end.

For a rational function f(x) = zé—jg, the end behavior is determined by the relationship between the degree of p

and the degree of g. If the degree of p is less than the degree of ¢, the line y =0 is a horizontal asymptote for

f. If the degree of p is equal to the degree of g, then the line y = Z—" is a horizontal asymptote, where a, and
n

b, are the leading coefficients of p and g, respectively. If the degree of p is greater than the degree of g, then

f approaches oo or —oo at each end.

4.7 Applied Optimization Problems

¢ To solve an optimization problem, begin by drawing a picture and introducing variables.

Find an equation relating the variables.

¢ Find a function of one variable to describe the quantity that is to be minimized or maximized.
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¢ Look for critical points to locate local extrema.

4.8 L’Hopital’s Rule

e L’Hopital’s rule can be used to evaluate the limit of a quotient when the indeterminate form % or co/oco arises.

e L’Hopital’s rule can also be applied to other indeterminate forms if they can be rewritten in terms of a limit involving

a quotient that has the indeterminate form 0 or co/co.

0

* The exponential function e* grows faster than any power function x”, p > 0.

* The logarithmic function Inx grows more slowly than any power function x”, p > 0.

4.9 Newton’s Method

* Newton’s method approximates roots of f(x) =0 by starting with an initial approximation x(, then uses tangent
lines to the graph of f to create a sequence of approximations x;, x5, X3,....

* Typically, Newton’s method is an efficient method for finding a particular root. In certain cases, Newton’s method
fails to work because the list of numbers x(, x{, x,,... does not approach a finite value or it approaches a value
other than the root sought.

* Any process in which a list of numbers x(, x;, x,,... is generated by defining an initial number x( and defining

the subsequent numbers by the equation x, = F(x, _ ) for some function F is an iterative process. Newton’s

NAC))
J @)

method is an example of an iterative process, where the function F(x) = x — [ ] for a given function f.

4.10 Antiderivatives
e If F isan antiderivative of f, then every antiderivative of f is of the form F(x) + C for some constant C.

¢ Solving the initial-value problem

D = 100, ¥x9) = ¥

requires us first to find the set of antiderivatives of f and then to look for the particular antiderivative that also

satisfies the initial condition.

CHAPTER 4 REVIEW EXERCISES

True or False? Justify your answer with a proof or a 528. There is a function such that there is both an
counterexample. Assume that f(x) is continuous and inflection point and a critical point for some value x = a.
differentiable unless stated otherwise.

525. If f(—1)=—6 and f(1) =2, then there exists at

least one point x € [—1, 1] such that f(x) = 4.

526. If f'(c) =0, there is a maximum or minimum at

X=c.

527. There is a function such that f(x) <0, f'(x) > 0,
and f”(x) < 0. (A graphical “proof” is acceptable for this

answer.)
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529. Given the graph of f’,

increasing or decreasing.
y

determine where f is

530. The graph of f is given below. Draw f’.

531. Find the Ilinear approximation L(x) to

y= 2+ tan(zx) near x = %

532. Find the differential of y= x*—5x—6 and

evaluate for x =2 with dx =0.1.
Find the critical points and the local and absolute extrema

of the following functions on the given interval.

533. f(x) = x+sin’(x) over [0, 7]

534. f(x) =3x*—4x> = 12x> 4+ 6 over [-3, 3]
Determine over which intervals the following functions are
increasing, decreasing, concave up, and concave down.
535. x(f) = 3t — 8% — 181

536. y = x+ sin(xzx)

537. g(x)=x—-vx

538. f(0) = sin(36)

Evaluate the following limits.
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539 1im3x—sz+l
CoxTe X1

540. xli)moocos(%)

541, lim X1
x — 1sin(zx)

542.  lim (3x)'~
X = 00

Use Newton’s method to find the first two iterations, given
the starting point.

543. y=x3+1,x0=0.5

Find the antiderivatives F(x) of the following functions.

545. g(x) = i— L
X

546. f(x) = 2x+ 6¢cosx, F(r) = > +2

Graph the following functions by hand. Make sure to label
the inflection points, critical points, zeros, and asymptotes.

1
547. y=—"~1—
x(x + 1)2

548. y=x-— V4 — x2

549. A car is being compacted into a rectangular solid.
The volume is decreasing at a rate of 2 m?%/sec. The length
and width of the compactor are square, but the height is not
the same length as the length and width. If the length and
width walls move toward each other at a rate of 0.25 m/
sec, find the rate at which the height is changing when the
length and width are 2 m and the height is 1.5 m.
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550. A rocket is launched into space; its kinetic energy
is given by K(¢) = (%)m(t)v(t) 2, where K is the kinetic

energy in joules, m is the mass of the rocket in kilograms,
and v is the velocity of the rocket in meters/second.
Assume the velocity is increasing at a rate of 15 m/sec?
and the mass is decreasing at a rate of 10 kg/sec because

the fuel is being burned. At what rate is the rocket’s kinetic
energy changing when the mass is 2000 kg and the

velocity is 5000 m/sec? Give your answer in mega-Joules

(MJ), which is equivalent to 106 7.

551. The famous Regiomontanus’ problem for angle
maximization was proposed during the 15 th century. A

painting hangs on a wall with the bottom of the painting a
distance a feet above eye level, and the top b feet above

eye level. What distance x (in feet) from the wall should

the viewer stand to maximize the angle subtended by the
painting, 67?

aIndld

Eye level L .
X

552. An airline sells tickets from Tokyo to Detroit for
$1200. There are 500 seats available and a typical flight
books 350 seats. For every $10 decrease in price, the
airline observes an additional five seats sold. What should
the fare be to maximize profit? How many passengers
would be onboard?

505
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